ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3+x\times 4=xx+6+x\times 14
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
3+x\times 4=x^{2}+6+x\times 14
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
3+x\times 4-x^{2}=6+x\times 14
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
3+x\times 4-x^{2}-6=x\times 14
ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ.
-3+x\times 4-x^{2}=x\times 14
-3 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 6 ಕಳೆಯಿರಿ.
-3+x\times 4-x^{2}-x\times 14=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x\times 14 ಕಳೆಯಿರಿ.
-3-10x-x^{2}=0
-10x ಪಡೆದುಕೊಳ್ಳಲು x\times 4 ಮತ್ತು -x\times 14 ಕೂಡಿಸಿ.
-x^{2}-10x-3=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ -10 ಮತ್ತು c ಗೆ -3 ಬದಲಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
ವರ್ಗ -10.
x=\frac{-\left(-10\right)±\sqrt{100+4\left(-3\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100-12}}{2\left(-1\right)}
-3 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{88}}{2\left(-1\right)}
-12 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-\left(-10\right)±2\sqrt{22}}{2\left(-1\right)}
88 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{10±2\sqrt{22}}{2\left(-1\right)}
-10 ನ ವಿಲೋಮವು 10 ಆಗಿದೆ.
x=\frac{10±2\sqrt{22}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{22}+10}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±2\sqrt{22}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{22} ಗೆ 10 ಸೇರಿಸಿ.
x=-\left(\sqrt{22}+5\right)
-2 ದಿಂದ 10+2\sqrt{22} ಭಾಗಿಸಿ.
x=\frac{10-2\sqrt{22}}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±2\sqrt{22}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ದಿಂದ 2\sqrt{22} ಕಳೆಯಿರಿ.
x=\sqrt{22}-5
-2 ದಿಂದ 10-2\sqrt{22} ಭಾಗಿಸಿ.
x=-\left(\sqrt{22}+5\right) x=\sqrt{22}-5
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3+x\times 4=xx+6+x\times 14
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
3+x\times 4=x^{2}+6+x\times 14
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
3+x\times 4-x^{2}=6+x\times 14
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
3+x\times 4-x^{2}-x\times 14=6
ಎರಡೂ ಕಡೆಗಳಿಂದ x\times 14 ಕಳೆಯಿರಿ.
3-10x-x^{2}=6
-10x ಪಡೆದುಕೊಳ್ಳಲು x\times 4 ಮತ್ತು -x\times 14 ಕೂಡಿಸಿ.
-10x-x^{2}=6-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
-10x-x^{2}=3
3 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 3 ಕಳೆಯಿರಿ.
-x^{2}-10x=3
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}-10x}{-1}=\frac{3}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{10}{-1}\right)x=\frac{3}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+10x=\frac{3}{-1}
-1 ದಿಂದ -10 ಭಾಗಿಸಿ.
x^{2}+10x=-3
-1 ದಿಂದ 3 ಭಾಗಿಸಿ.
x^{2}+10x+5^{2}=-3+5^{2}
5 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 10 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 5 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+10x+25=-3+25
ವರ್ಗ 5.
x^{2}+10x+25=22
25 ಗೆ -3 ಸೇರಿಸಿ.
\left(x+5\right)^{2}=22
ಅಪವರ್ತನ x^{2}+10x+25. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+5\right)^{2}}=\sqrt{22}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+5=\sqrt{22} x+5=-\sqrt{22}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{22}-5 x=-\sqrt{22}-5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
3+x\times 4=xx+6+x\times 14
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
3+x\times 4=x^{2}+6+x\times 14
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
3+x\times 4-x^{2}=6+x\times 14
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
3+x\times 4-x^{2}-6=x\times 14
ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ.
-3+x\times 4-x^{2}=x\times 14
-3 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 6 ಕಳೆಯಿರಿ.
-3+x\times 4-x^{2}-x\times 14=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x\times 14 ಕಳೆಯಿರಿ.
-3-10x-x^{2}=0
-10x ಪಡೆದುಕೊಳ್ಳಲು x\times 4 ಮತ್ತು -x\times 14 ಕೂಡಿಸಿ.
-x^{2}-10x-3=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ -10 ಮತ್ತು c ಗೆ -3 ಬದಲಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
ವರ್ಗ -10.
x=\frac{-\left(-10\right)±\sqrt{100+4\left(-3\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100-12}}{2\left(-1\right)}
-3 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{88}}{2\left(-1\right)}
-12 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-\left(-10\right)±2\sqrt{22}}{2\left(-1\right)}
88 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{10±2\sqrt{22}}{2\left(-1\right)}
-10 ನ ವಿಲೋಮವು 10 ಆಗಿದೆ.
x=\frac{10±2\sqrt{22}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{22}+10}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±2\sqrt{22}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{22} ಗೆ 10 ಸೇರಿಸಿ.
x=-\left(\sqrt{22}+5\right)
-2 ದಿಂದ 10+2\sqrt{22} ಭಾಗಿಸಿ.
x=\frac{10-2\sqrt{22}}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±2\sqrt{22}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ದಿಂದ 2\sqrt{22} ಕಳೆಯಿರಿ.
x=\sqrt{22}-5
-2 ದಿಂದ 10-2\sqrt{22} ಭಾಗಿಸಿ.
x=-\left(\sqrt{22}+5\right) x=\sqrt{22}-5
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3+x\times 4=xx+6+x\times 14
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
3+x\times 4=x^{2}+6+x\times 14
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
3+x\times 4-x^{2}=6+x\times 14
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
3+x\times 4-x^{2}-x\times 14=6
ಎರಡೂ ಕಡೆಗಳಿಂದ x\times 14 ಕಳೆಯಿರಿ.
3-10x-x^{2}=6
-10x ಪಡೆದುಕೊಳ್ಳಲು x\times 4 ಮತ್ತು -x\times 14 ಕೂಡಿಸಿ.
-10x-x^{2}=6-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
-10x-x^{2}=3
3 ಪಡೆದುಕೊಳ್ಳಲು 6 ದಿಂದ 3 ಕಳೆಯಿರಿ.
-x^{2}-10x=3
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}-10x}{-1}=\frac{3}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{10}{-1}\right)x=\frac{3}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+10x=\frac{3}{-1}
-1 ದಿಂದ -10 ಭಾಗಿಸಿ.
x^{2}+10x=-3
-1 ದಿಂದ 3 ಭಾಗಿಸಿ.
x^{2}+10x+5^{2}=-3+5^{2}
5 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 10 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 5 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+10x+25=-3+25
ವರ್ಗ 5.
x^{2}+10x+25=22
25 ಗೆ -3 ಸೇರಿಸಿ.
\left(x+5\right)^{2}=22
ಅಪವರ್ತನ x^{2}+10x+25. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+5\right)^{2}}=\sqrt{22}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+5=\sqrt{22} x+5=-\sqrt{22}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{22}-5 x=-\sqrt{22}-5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.