ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-4x^{2}+12x+3=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-12±\sqrt{12^{2}-4\left(-4\right)\times 3}}{2\left(-4\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -4, b ಗೆ 12 ಮತ್ತು c ಗೆ 3 ಬದಲಿಸಿ.
x=\frac{-12±\sqrt{144-4\left(-4\right)\times 3}}{2\left(-4\right)}
ವರ್ಗ 12.
x=\frac{-12±\sqrt{144+16\times 3}}{2\left(-4\right)}
-4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-12±\sqrt{144+48}}{2\left(-4\right)}
3 ಅನ್ನು 16 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-12±\sqrt{192}}{2\left(-4\right)}
48 ಗೆ 144 ಸೇರಿಸಿ.
x=\frac{-12±8\sqrt{3}}{2\left(-4\right)}
192 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-12±8\sqrt{3}}{-8}
-4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{8\sqrt{3}-12}{-8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-12±8\sqrt{3}}{-8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8\sqrt{3} ಗೆ -12 ಸೇರಿಸಿ.
x=\frac{3}{2}-\sqrt{3}
-8 ದಿಂದ -12+8\sqrt{3} ಭಾಗಿಸಿ.
x=\frac{-8\sqrt{3}-12}{-8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-12±8\sqrt{3}}{-8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -12 ದಿಂದ 8\sqrt{3} ಕಳೆಯಿರಿ.
x=\sqrt{3}+\frac{3}{2}
-8 ದಿಂದ -12-8\sqrt{3} ಭಾಗಿಸಿ.
x=\frac{3}{2}-\sqrt{3} x=\sqrt{3}+\frac{3}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-4x^{2}+12x+3=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
-4x^{2}+12x+3-3=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
-4x^{2}+12x=-3
3 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{-4x^{2}+12x}{-4}=-\frac{3}{-4}
-4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{12}{-4}x=-\frac{3}{-4}
-4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-3x=-\frac{3}{-4}
-4 ದಿಂದ 12 ಭಾಗಿಸಿ.
x^{2}-3x=\frac{3}{4}
-4 ದಿಂದ -3 ಭಾಗಿಸಿ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{3}{4}+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-3x+\frac{9}{4}=\frac{3+9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-3x+\frac{9}{4}=3
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{4} ಗೆ \frac{3}{4} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{3}{2}\right)^{2}=3
ಅಪವರ್ತನ x^{2}-3x+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{3}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{2}=\sqrt{3} x-\frac{3}{2}=-\sqrt{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{3}+\frac{3}{2} x=\frac{3}{2}-\sqrt{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{2} ಸೇರಿಸಿ.