ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}\times 7=2
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
14x^{2}=2
14 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 7 ಗುಣಿಸಿ.
x^{2}=\frac{2}{14}
14 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}=\frac{1}{7}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{2}{14} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{\sqrt{7}}{7} x=-\frac{\sqrt{7}}{7}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
2x^{2}\times 7=2
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
14x^{2}=2
14 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 7 ಗುಣಿಸಿ.
14x^{2}-2=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
x=\frac{0±\sqrt{0^{2}-4\times 14\left(-2\right)}}{2\times 14}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 14, b ಗೆ 0 ಮತ್ತು c ಗೆ -2 ಬದಲಿಸಿ.
x=\frac{0±\sqrt{-4\times 14\left(-2\right)}}{2\times 14}
ವರ್ಗ 0.
x=\frac{0±\sqrt{-56\left(-2\right)}}{2\times 14}
14 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±\sqrt{112}}{2\times 14}
-2 ಅನ್ನು -56 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±4\sqrt{7}}{2\times 14}
112 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{0±4\sqrt{7}}{28}
14 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{7}}{7}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±4\sqrt{7}}{28} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=-\frac{\sqrt{7}}{7}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±4\sqrt{7}}{28} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=\frac{\sqrt{7}}{7} x=-\frac{\sqrt{7}}{7}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.