ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
t ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

t\left(6-t\right)=8
2 ಮತ್ತು 2 ರದ್ದುಗೊಳಿಸಿ.
6t-t^{2}=8
6-t ದಿಂದ t ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
6t-t^{2}-8=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 8 ಕಳೆಯಿರಿ.
-t^{2}+6t-8=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
t=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-8\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 6 ಮತ್ತು c ಗೆ -8 ಬದಲಿಸಿ.
t=\frac{-6±\sqrt{36-4\left(-1\right)\left(-8\right)}}{2\left(-1\right)}
ವರ್ಗ 6.
t=\frac{-6±\sqrt{36+4\left(-8\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-6±\sqrt{36-32}}{2\left(-1\right)}
-8 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-6±\sqrt{4}}{2\left(-1\right)}
-32 ಗೆ 36 ಸೇರಿಸಿ.
t=\frac{-6±2}{2\left(-1\right)}
4 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t=\frac{-6±2}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
t=-\frac{4}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-6±2}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ಗೆ -6 ಸೇರಿಸಿ.
t=2
-2 ದಿಂದ -4 ಭಾಗಿಸಿ.
t=-\frac{8}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-6±2}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 2 ಕಳೆಯಿರಿ.
t=4
-2 ದಿಂದ -8 ಭಾಗಿಸಿ.
t=2 t=4
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
t\left(6-t\right)=8
2 ಮತ್ತು 2 ರದ್ದುಗೊಳಿಸಿ.
6t-t^{2}=8
6-t ದಿಂದ t ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
-t^{2}+6t=8
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-t^{2}+6t}{-1}=\frac{8}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
t^{2}+\frac{6}{-1}t=\frac{8}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
t^{2}-6t=\frac{8}{-1}
-1 ದಿಂದ 6 ಭಾಗಿಸಿ.
t^{2}-6t=-8
-1 ದಿಂದ 8 ಭಾಗಿಸಿ.
t^{2}-6t+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
-3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
t^{2}-6t+9=-8+9
ವರ್ಗ -3.
t^{2}-6t+9=1
9 ಗೆ -8 ಸೇರಿಸಿ.
\left(t-3\right)^{2}=1
ಅಪವರ್ತನ t^{2}-6t+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(t-3\right)^{2}}=\sqrt{1}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t-3=1 t-3=-1
ಸರಳೀಕೃತಗೊಳಿಸಿ.
t=4 t=2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3 ಸೇರಿಸಿ.