ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

29500x^{2}-7644x=40248
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
29500x^{2}-7644x-40248=40248-40248
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 40248 ಕಳೆಯಿರಿ.
29500x^{2}-7644x-40248=0
40248 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x=\frac{-\left(-7644\right)±\sqrt{\left(-7644\right)^{2}-4\times 29500\left(-40248\right)}}{2\times 29500}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 29500, b ಗೆ -7644 ಮತ್ತು c ಗೆ -40248 ಬದಲಿಸಿ.
x=\frac{-\left(-7644\right)±\sqrt{58430736-4\times 29500\left(-40248\right)}}{2\times 29500}
ವರ್ಗ -7644.
x=\frac{-\left(-7644\right)±\sqrt{58430736-118000\left(-40248\right)}}{2\times 29500}
29500 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-7644\right)±\sqrt{58430736+4749264000}}{2\times 29500}
-40248 ಅನ್ನು -118000 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-7644\right)±\sqrt{4807694736}}{2\times 29500}
4749264000 ಗೆ 58430736 ಸೇರಿಸಿ.
x=\frac{-\left(-7644\right)±36\sqrt{3709641}}{2\times 29500}
4807694736 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{7644±36\sqrt{3709641}}{2\times 29500}
-7644 ನ ವಿಲೋಮವು 7644 ಆಗಿದೆ.
x=\frac{7644±36\sqrt{3709641}}{59000}
29500 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{36\sqrt{3709641}+7644}{59000}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{7644±36\sqrt{3709641}}{59000} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 36\sqrt{3709641} ಗೆ 7644 ಸೇರಿಸಿ.
x=\frac{9\sqrt{3709641}+1911}{14750}
59000 ದಿಂದ 7644+36\sqrt{3709641} ಭಾಗಿಸಿ.
x=\frac{7644-36\sqrt{3709641}}{59000}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{7644±36\sqrt{3709641}}{59000} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 7644 ದಿಂದ 36\sqrt{3709641} ಕಳೆಯಿರಿ.
x=\frac{1911-9\sqrt{3709641}}{14750}
59000 ದಿಂದ 7644-36\sqrt{3709641} ಭಾಗಿಸಿ.
x=\frac{9\sqrt{3709641}+1911}{14750} x=\frac{1911-9\sqrt{3709641}}{14750}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
29500x^{2}-7644x=40248
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{29500x^{2}-7644x}{29500}=\frac{40248}{29500}
29500 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{7644}{29500}\right)x=\frac{40248}{29500}
29500 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 29500 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{1911}{7375}x=\frac{40248}{29500}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-7644}{29500} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{1911}{7375}x=\frac{10062}{7375}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{40248}{29500} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{1911}{7375}x+\left(-\frac{1911}{14750}\right)^{2}=\frac{10062}{7375}+\left(-\frac{1911}{14750}\right)^{2}
-\frac{1911}{14750} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{1911}{7375} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1911}{14750} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}=\frac{10062}{7375}+\frac{3651921}{217562500}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1911}{14750} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}=\frac{300480921}{217562500}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{3651921}{217562500} ಗೆ \frac{10062}{7375} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{1911}{14750}\right)^{2}=\frac{300480921}{217562500}
ಅಪವರ್ತನ x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1911}{14750}\right)^{2}}=\sqrt{\frac{300480921}{217562500}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1911}{14750}=\frac{9\sqrt{3709641}}{14750} x-\frac{1911}{14750}=-\frac{9\sqrt{3709641}}{14750}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{9\sqrt{3709641}+1911}{14750} x=\frac{1911-9\sqrt{3709641}}{14750}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1911}{14750} ಸೇರಿಸಿ.