x ಪರಿಹರಿಸಿ
x=\frac{1}{2}=0.5
x=-\frac{1}{2}=-0.5
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-100x^{2}=-25
ಎರಡೂ ಕಡೆಗಳಿಂದ 25 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
x^{2}=\frac{-25}{-100}
-100 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}=\frac{1}{4}
-25 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-25}{-100} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{1}{2} x=-\frac{1}{2}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
-100x^{2}+25=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳು, x^{2} ಪದದ ಜೊತೆಗೆ ಆದರೆ ಯಾವುದೇ x ಪದವಿಲ್ಲ, ಒಮ್ಮೆ ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿ ಅವುಗಳನ್ನು ಇರಿಸಿದರೆ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ವರ್ಗ ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ಇನ್ನೂ ಪರಿಹರಿಸಬಹುದು: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-100\right)\times 25}}{2\left(-100\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -100, b ಗೆ 0 ಮತ್ತು c ಗೆ 25 ಬದಲಿಸಿ.
x=\frac{0±\sqrt{-4\left(-100\right)\times 25}}{2\left(-100\right)}
ವರ್ಗ 0.
x=\frac{0±\sqrt{400\times 25}}{2\left(-100\right)}
-100 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±\sqrt{10000}}{2\left(-100\right)}
25 ಅನ್ನು 400 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±100}{2\left(-100\right)}
10000 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{0±100}{-200}
-100 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{1}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±100}{-200} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 100 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{100}{-200} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{1}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±100}{-200} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 100 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-100}{-200} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{1}{2} x=\frac{1}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}