ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

25x^{2}-90x+82=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 25\times 82}}{2\times 25}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 25, b ಗೆ -90 ಮತ್ತು c ಗೆ 82 ಬದಲಿಸಿ.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 25\times 82}}{2\times 25}
ವರ್ಗ -90.
x=\frac{-\left(-90\right)±\sqrt{8100-100\times 82}}{2\times 25}
25 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-90\right)±\sqrt{8100-8200}}{2\times 25}
82 ಅನ್ನು -100 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-90\right)±\sqrt{-100}}{2\times 25}
-8200 ಗೆ 8100 ಸೇರಿಸಿ.
x=\frac{-\left(-90\right)±10i}{2\times 25}
-100 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{90±10i}{2\times 25}
-90 ನ ವಿಲೋಮವು 90 ಆಗಿದೆ.
x=\frac{90±10i}{50}
25 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{90+10i}{50}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{90±10i}{50} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10i ಗೆ 90 ಸೇರಿಸಿ.
x=\frac{9}{5}+\frac{1}{5}i
50 ದಿಂದ 90+10i ಭಾಗಿಸಿ.
x=\frac{90-10i}{50}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{90±10i}{50} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 90 ದಿಂದ 10i ಕಳೆಯಿರಿ.
x=\frac{9}{5}-\frac{1}{5}i
50 ದಿಂದ 90-10i ಭಾಗಿಸಿ.
x=\frac{9}{5}+\frac{1}{5}i x=\frac{9}{5}-\frac{1}{5}i
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
25x^{2}-90x+82=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
25x^{2}-90x+82-82=-82
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 82 ಕಳೆಯಿರಿ.
25x^{2}-90x=-82
82 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{25x^{2}-90x}{25}=-\frac{82}{25}
25 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{90}{25}\right)x=-\frac{82}{25}
25 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 25 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{18}{5}x=-\frac{82}{25}
5 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-90}{25} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=-\frac{82}{25}+\left(-\frac{9}{5}\right)^{2}
-\frac{9}{5} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{18}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{9}{5} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{-82+81}{25}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{9}{5} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{18}{5}x+\frac{81}{25}=-\frac{1}{25}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{81}{25} ಗೆ -\frac{82}{25} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{9}{5}\right)^{2}=-\frac{1}{25}
ಅಪವರ್ತನ x^{2}-\frac{18}{5}x+\frac{81}{25}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{-\frac{1}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{9}{5}=\frac{1}{5}i x-\frac{9}{5}=-\frac{1}{5}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{9}{5}+\frac{1}{5}i x=\frac{9}{5}-\frac{1}{5}i
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{9}{5} ಸೇರಿಸಿ.