ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

25x^{2}-19x-3=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 25\left(-3\right)}}{2\times 25}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 25, b ಗೆ -19 ಮತ್ತು c ಗೆ -3 ಬದಲಿಸಿ.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 25\left(-3\right)}}{2\times 25}
ವರ್ಗ -19.
x=\frac{-\left(-19\right)±\sqrt{361-100\left(-3\right)}}{2\times 25}
25 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-19\right)±\sqrt{361+300}}{2\times 25}
-3 ಅನ್ನು -100 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-19\right)±\sqrt{661}}{2\times 25}
300 ಗೆ 361 ಸೇರಿಸಿ.
x=\frac{19±\sqrt{661}}{2\times 25}
-19 ನ ವಿಲೋಮವು 19 ಆಗಿದೆ.
x=\frac{19±\sqrt{661}}{50}
25 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{661}+19}{50}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{19±\sqrt{661}}{50} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{661} ಗೆ 19 ಸೇರಿಸಿ.
x=\frac{19-\sqrt{661}}{50}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{19±\sqrt{661}}{50} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 19 ದಿಂದ \sqrt{661} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{661}+19}{50} x=\frac{19-\sqrt{661}}{50}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
25x^{2}-19x-3=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
25x^{2}-19x-3-\left(-3\right)=-\left(-3\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3 ಸೇರಿಸಿ.
25x^{2}-19x=-\left(-3\right)
-3 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
25x^{2}-19x=3
0 ದಿಂದ -3 ಕಳೆಯಿರಿ.
\frac{25x^{2}-19x}{25}=\frac{3}{25}
25 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{19}{25}x=\frac{3}{25}
25 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 25 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{19}{25}x+\left(-\frac{19}{50}\right)^{2}=\frac{3}{25}+\left(-\frac{19}{50}\right)^{2}
-\frac{19}{50} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{19}{25} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{19}{50} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{19}{25}x+\frac{361}{2500}=\frac{3}{25}+\frac{361}{2500}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{19}{50} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{19}{25}x+\frac{361}{2500}=\frac{661}{2500}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{361}{2500} ಗೆ \frac{3}{25} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{19}{50}\right)^{2}=\frac{661}{2500}
ಅಪವರ್ತನ x^{2}-\frac{19}{25}x+\frac{361}{2500}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{19}{50}\right)^{2}}=\sqrt{\frac{661}{2500}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{19}{50}=\frac{\sqrt{661}}{50} x-\frac{19}{50}=-\frac{\sqrt{661}}{50}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{661}+19}{50} x=\frac{19-\sqrt{661}}{50}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{19}{50} ಸೇರಿಸಿ.