ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

p+q=-20 pq=25\times 4=100
ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 25b^{2}+pb+qb+4 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. p ಮತ್ತು q ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
pq ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, p ಮತ್ತು q ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. p+q ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, p ಮತ್ತು q ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 100 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
p=-10 q=-10
ಪರಿಹಾರವು -20 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(25b^{2}-10b\right)+\left(-10b+4\right)
\left(25b^{2}-10b\right)+\left(-10b+4\right) ನ ಹಾಗೆ 25b^{2}-20b+4 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
5b\left(5b-2\right)-2\left(5b-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 5b ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(5b-2\right)\left(5b-2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 5b-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(5b-2\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
factor(25b^{2}-20b+4)
ಈ ತ್ರಿಪದೋಕ್ತಿಯು ತ್ರಿಪದೋಕ್ತಿ ವರ್ಗ, ಸಾಮಾನ್ಯ ಅಂಶದ ಮೂಲಕ ಬಹುಶಃ ಗುಣಿಸಿಲಾದ ಫಾರ್ಮ್‌ ಹೊಂದಿದೆ. ತ್ರಿಪದೋಕ್ತಿ ವರ್ಗಗಳು ಮುಂಚಿನ ಮತ್ತು ಹಿಂದಿನ ಪದಗಳ ವರ್ಗ ಮೂಲಗಳನ್ನು ಹುಡುಕುವ ಮೂಲಕ ಅಪವರ್ತನಗಳಾಗಬಹುದು.
gcf(25,-20,4)=1
ಗುಣಾಂಕಗಳ ಅತೀ ಸಾಮಾನ್ಯ ಅಪವರ್ತನ ಹುಡುಕಿ.
\sqrt{25b^{2}}=5b
ಪ್ರಧಾಮ ಪದ 25b^{2}, ವರ್ಗಮೂಲವನ್ನು ಹುಡುಕಿ.
\sqrt{4}=2
ಹಿಂದಿರುವ ಪದ 4, ವರ್ಗಮೂಲವನ್ನು ಹುಡುಕಿ.
\left(5b-2\right)^{2}
ತ್ರಿಪದೋಕ್ತಿ ವರ್ಗವು ದ್ವಿಪದೋಕ್ತಿಯ ವರ್ಗವಾಗಿದ್ದು, ಇದು ಮುಂದಿನ ಮತ್ತು ಹಿಂದಿನ ಪದಗಳ ವರ್ಗ ಮೂಲಗಳ ಮೊತ್ತ ಅಥವಾ ವ್ಯತ್ಯಾಸವಾಗಿರುತ್ತದೆ, ಜೊತೆಗೆ ತ್ರಿಪದೋಕ್ತಿ ವರ್ಗದ ಮಧ್ಯಮ ಪದದ ಚಿಹ್ನೆಯ ಮೂಲಕ ಚಿಹ್ನೆಯನ್ನು ನಿರ್ಧರಿಸುತ್ತದೆ.
25b^{2}-20b+4=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
b=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 25\times 4}}{2\times 25}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
b=\frac{-\left(-20\right)±\sqrt{400-4\times 25\times 4}}{2\times 25}
ವರ್ಗ -20.
b=\frac{-\left(-20\right)±\sqrt{400-100\times 4}}{2\times 25}
25 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
b=\frac{-\left(-20\right)±\sqrt{400-400}}{2\times 25}
4 ಅನ್ನು -100 ಬಾರಿ ಗುಣಿಸಿ.
b=\frac{-\left(-20\right)±\sqrt{0}}{2\times 25}
-400 ಗೆ 400 ಸೇರಿಸಿ.
b=\frac{-\left(-20\right)±0}{2\times 25}
0 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
b=\frac{20±0}{2\times 25}
-20 ನ ವಿಲೋಮವು 20 ಆಗಿದೆ.
b=\frac{20±0}{50}
25 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
25b^{2}-20b+4=25\left(b-\frac{2}{5}\right)\left(b-\frac{2}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{2}{5} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{2}{5} ನ್ನು ಬಳಸಿ.
25b^{2}-20b+4=25\times \frac{5b-2}{5}\left(b-\frac{2}{5}\right)
ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ b ದಿಂದ \frac{2}{5} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
25b^{2}-20b+4=25\times \frac{5b-2}{5}\times \frac{5b-2}{5}
ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ b ದಿಂದ \frac{2}{5} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
25b^{2}-20b+4=25\times \frac{\left(5b-2\right)\left(5b-2\right)}{5\times 5}
ಸಂಖ್ಯಾಕಾರ ಸಮಯ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದ ಸಮಯ ಛೇದವನ್ನು ಗುಣಿಸುವ ಮೂಲಕ \frac{5b-2}{5} ಅನ್ನು \frac{5b-2}{5} ಬಾರಿ ಗುಣಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
25b^{2}-20b+4=25\times \frac{\left(5b-2\right)\left(5b-2\right)}{25}
5 ಅನ್ನು 5 ಬಾರಿ ಗುಣಿಸಿ.
25b^{2}-20b+4=\left(5b-2\right)\left(5b-2\right)
25 ಮತ್ತು 25 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 25 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.