ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

25\left(x^{2}-2x+1\right)-9=0
\left(x-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
25x^{2}-50x+25-9=0
x^{2}-2x+1 ದಿಂದ 25 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
25x^{2}-50x+16=0
16 ಪಡೆದುಕೊಳ್ಳಲು 25 ದಿಂದ 9 ಕಳೆಯಿರಿ.
a+b=-50 ab=25\times 16=400
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 25x^{2}+ax+bx+16 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-400 -2,-200 -4,-100 -5,-80 -8,-50 -10,-40 -16,-25 -20,-20
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 400 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-400=-401 -2-200=-202 -4-100=-104 -5-80=-85 -8-50=-58 -10-40=-50 -16-25=-41 -20-20=-40
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-40 b=-10
ಪರಿಹಾರವು -50 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(25x^{2}-40x\right)+\left(-10x+16\right)
\left(25x^{2}-40x\right)+\left(-10x+16\right) ನ ಹಾಗೆ 25x^{2}-50x+16 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
5x\left(5x-8\right)-2\left(5x-8\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 5x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(5x-8\right)\left(5x-2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 5x-8 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=\frac{8}{5} x=\frac{2}{5}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 5x-8=0 ಮತ್ತು 5x-2=0 ಪರಿಹರಿಸಿ.
25\left(x^{2}-2x+1\right)-9=0
\left(x-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
25x^{2}-50x+25-9=0
x^{2}-2x+1 ದಿಂದ 25 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
25x^{2}-50x+16=0
16 ಪಡೆದುಕೊಳ್ಳಲು 25 ದಿಂದ 9 ಕಳೆಯಿರಿ.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 25\times 16}}{2\times 25}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 25, b ಗೆ -50 ಮತ್ತು c ಗೆ 16 ಬದಲಿಸಿ.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 25\times 16}}{2\times 25}
ವರ್ಗ -50.
x=\frac{-\left(-50\right)±\sqrt{2500-100\times 16}}{2\times 25}
25 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-50\right)±\sqrt{2500-1600}}{2\times 25}
16 ಅನ್ನು -100 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-50\right)±\sqrt{900}}{2\times 25}
-1600 ಗೆ 2500 ಸೇರಿಸಿ.
x=\frac{-\left(-50\right)±30}{2\times 25}
900 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{50±30}{2\times 25}
-50 ನ ವಿಲೋಮವು 50 ಆಗಿದೆ.
x=\frac{50±30}{50}
25 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{80}{50}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{50±30}{50} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 30 ಗೆ 50 ಸೇರಿಸಿ.
x=\frac{8}{5}
10 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{80}{50} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{20}{50}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{50±30}{50} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 50 ದಿಂದ 30 ಕಳೆಯಿರಿ.
x=\frac{2}{5}
10 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{20}{50} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{8}{5} x=\frac{2}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
25\left(x^{2}-2x+1\right)-9=0
\left(x-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
25x^{2}-50x+25-9=0
x^{2}-2x+1 ದಿಂದ 25 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
25x^{2}-50x+16=0
16 ಪಡೆದುಕೊಳ್ಳಲು 25 ದಿಂದ 9 ಕಳೆಯಿರಿ.
25x^{2}-50x=-16
ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
\frac{25x^{2}-50x}{25}=-\frac{16}{25}
25 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{50}{25}\right)x=-\frac{16}{25}
25 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 25 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-2x=-\frac{16}{25}
25 ದಿಂದ -50 ಭಾಗಿಸಿ.
x^{2}-2x+1=-\frac{16}{25}+1
-1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-2x+1=\frac{9}{25}
1 ಗೆ -\frac{16}{25} ಸೇರಿಸಿ.
\left(x-1\right)^{2}=\frac{9}{25}
ಅಪವರ್ತನ x^{2}-2x+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-1=\frac{3}{5} x-1=-\frac{3}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{8}{5} x=\frac{2}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1 ಸೇರಿಸಿ.