ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

24x^{2}x^{2}+1=27x^{2}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x^{2} ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
24x^{4}+1=27x^{2}
ಒಂದೇ ಮೂಲ ಸಂಖ್ಯೆಯಿಂದ ಪರಿಮಾಣಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಲು, ಅವುಗಳ ಘಾತಗಳನ್ನು ಸೇರಿಸಿ. 4 ಪಡೆಯಲು 2 ಮತ್ತು 2 ಸೇರಿಸಿ.
24x^{4}+1-27x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 27x^{2} ಕಳೆಯಿರಿ.
24t^{2}-27t+1=0
x^{2} ಗಾಗಿ t ಬದಲಿಸಿ.
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 24\times 1}}{2\times 24}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 24 ಅನ್ನು,b ಗೆ -27 ಅನ್ನು ಮತ್ತು c ಗೆ 1 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
t=\frac{27±\sqrt{633}}{48}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
t=\frac{\sqrt{633}}{48}+\frac{9}{16} t=-\frac{\sqrt{633}}{48}+\frac{9}{16}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{27±\sqrt{633}}{48} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
x=\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4}
x=t^{2} ಕಾರಣದಿಂದ, ಪ್ರತಿ t ಗೆ x=±\sqrt{t} ಅನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡುವ ಮೂಲಕ ಪರಿಹಾರಗಳನ್ನು ಪಡೆದುಕೊಳ್ಳಲಾಗಿದೆ.