x ಪರಿಹರಿಸಿ
x = \frac{\sqrt{73} + 35}{32} \approx 1.360750117
x=\frac{35-\sqrt{73}}{32}\approx 0.826749883
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
3+35x-16x^{2}=21
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
3+35x-16x^{2}-21=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 21 ಕಳೆಯಿರಿ.
-18+35x-16x^{2}=0
-18 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 21 ಕಳೆಯಿರಿ.
-16x^{2}+35x-18=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-35±\sqrt{35^{2}-4\left(-16\right)\left(-18\right)}}{2\left(-16\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -16, b ಗೆ 35 ಮತ್ತು c ಗೆ -18 ಬದಲಿಸಿ.
x=\frac{-35±\sqrt{1225-4\left(-16\right)\left(-18\right)}}{2\left(-16\right)}
ವರ್ಗ 35.
x=\frac{-35±\sqrt{1225+64\left(-18\right)}}{2\left(-16\right)}
-16 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-35±\sqrt{1225-1152}}{2\left(-16\right)}
-18 ಅನ್ನು 64 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-35±\sqrt{73}}{2\left(-16\right)}
-1152 ಗೆ 1225 ಸೇರಿಸಿ.
x=\frac{-35±\sqrt{73}}{-32}
-16 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{73}-35}{-32}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-35±\sqrt{73}}{-32} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{73} ಗೆ -35 ಸೇರಿಸಿ.
x=\frac{35-\sqrt{73}}{32}
-32 ದಿಂದ -35+\sqrt{73} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{73}-35}{-32}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-35±\sqrt{73}}{-32} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -35 ದಿಂದ \sqrt{73} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{73}+35}{32}
-32 ದಿಂದ -35-\sqrt{73} ಭಾಗಿಸಿ.
x=\frac{35-\sqrt{73}}{32} x=\frac{\sqrt{73}+35}{32}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3+35x-16x^{2}=21
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
35x-16x^{2}=21-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
35x-16x^{2}=18
18 ಪಡೆದುಕೊಳ್ಳಲು 21 ದಿಂದ 3 ಕಳೆಯಿರಿ.
-16x^{2}+35x=18
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-16x^{2}+35x}{-16}=\frac{18}{-16}
-16 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{35}{-16}x=\frac{18}{-16}
-16 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -16 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{35}{16}x=\frac{18}{-16}
-16 ದಿಂದ 35 ಭಾಗಿಸಿ.
x^{2}-\frac{35}{16}x=-\frac{9}{8}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{18}{-16} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{35}{16}x+\left(-\frac{35}{32}\right)^{2}=-\frac{9}{8}+\left(-\frac{35}{32}\right)^{2}
-\frac{35}{32} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{35}{16} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{35}{32} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{35}{16}x+\frac{1225}{1024}=-\frac{9}{8}+\frac{1225}{1024}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{35}{32} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{35}{16}x+\frac{1225}{1024}=\frac{73}{1024}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1225}{1024} ಗೆ -\frac{9}{8} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{35}{32}\right)^{2}=\frac{73}{1024}
ಅಪವರ್ತನ x^{2}-\frac{35}{16}x+\frac{1225}{1024}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{35}{32}\right)^{2}}=\sqrt{\frac{73}{1024}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{35}{32}=\frac{\sqrt{73}}{32} x-\frac{35}{32}=-\frac{\sqrt{73}}{32}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{73}+35}{32} x=\frac{35-\sqrt{73}}{32}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{35}{32} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}