ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

206x^{2}-40x+25=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 206\times 25}}{2\times 206}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 206, b ಗೆ -40 ಮತ್ತು c ಗೆ 25 ಬದಲಿಸಿ.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 206\times 25}}{2\times 206}
ವರ್ಗ -40.
x=\frac{-\left(-40\right)±\sqrt{1600-824\times 25}}{2\times 206}
206 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-40\right)±\sqrt{1600-20600}}{2\times 206}
25 ಅನ್ನು -824 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-40\right)±\sqrt{-19000}}{2\times 206}
-20600 ಗೆ 1600 ಸೇರಿಸಿ.
x=\frac{-\left(-40\right)±10\sqrt{190}i}{2\times 206}
-19000 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{40±10\sqrt{190}i}{2\times 206}
-40 ನ ವಿಲೋಮವು 40 ಆಗಿದೆ.
x=\frac{40±10\sqrt{190}i}{412}
206 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{40+10\sqrt{190}i}{412}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{40±10\sqrt{190}i}{412} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10i\sqrt{190} ಗೆ 40 ಸೇರಿಸಿ.
x=\frac{5\sqrt{190}i}{206}+\frac{10}{103}
412 ದಿಂದ 40+10i\sqrt{190} ಭಾಗಿಸಿ.
x=\frac{-10\sqrt{190}i+40}{412}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{40±10\sqrt{190}i}{412} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 40 ದಿಂದ 10i\sqrt{190} ಕಳೆಯಿರಿ.
x=-\frac{5\sqrt{190}i}{206}+\frac{10}{103}
412 ದಿಂದ 40-10i\sqrt{190} ಭಾಗಿಸಿ.
x=\frac{5\sqrt{190}i}{206}+\frac{10}{103} x=-\frac{5\sqrt{190}i}{206}+\frac{10}{103}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
206x^{2}-40x+25=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
206x^{2}-40x+25-25=-25
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 25 ಕಳೆಯಿರಿ.
206x^{2}-40x=-25
25 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{206x^{2}-40x}{206}=-\frac{25}{206}
206 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{40}{206}\right)x=-\frac{25}{206}
206 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 206 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{20}{103}x=-\frac{25}{206}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-40}{206} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{20}{103}x+\left(-\frac{10}{103}\right)^{2}=-\frac{25}{206}+\left(-\frac{10}{103}\right)^{2}
-\frac{10}{103} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{20}{103} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{10}{103} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{20}{103}x+\frac{100}{10609}=-\frac{25}{206}+\frac{100}{10609}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{10}{103} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{20}{103}x+\frac{100}{10609}=-\frac{2375}{21218}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{100}{10609} ಗೆ -\frac{25}{206} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{10}{103}\right)^{2}=-\frac{2375}{21218}
ಅಪವರ್ತನ x^{2}-\frac{20}{103}x+\frac{100}{10609}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{10}{103}\right)^{2}}=\sqrt{-\frac{2375}{21218}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{10}{103}=\frac{5\sqrt{190}i}{206} x-\frac{10}{103}=-\frac{5\sqrt{190}i}{206}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{5\sqrt{190}i}{206}+\frac{10}{103} x=-\frac{5\sqrt{190}i}{206}+\frac{10}{103}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{10}{103} ಸೇರಿಸಿ.