ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x, y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x-3y+5=0,4x+ky-2=0
ಪರ್ಯಾಯವನ್ನು ಬಳಸಿಕೊಂಡು ಸಮೀಕರಣಗಳ ಜೋಡಿಯನ್ನು ಪರಿಹರಿಸಲು, ಮೊದಲು ಚರಾಂಶಗಳ ಒಂದಕ್ಕೆ ಸಮೀಕರಣಗಳ ಒಂದನ್ನು ಪರಿಹರಿಸಿ. ತದನಂತರ ಇತರ ಸಮೀಕರಣದಲ್ಲಿ ಆ ಚರಾಂಶಕ್ಕೆ ಫಲಿತಾಂಶವನ್ನು ಬದಲಿಸಿ.
2x-3y+5=0
ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಿ ಹಾಗೂ ಸಮ ಚಿಹ್ನೆಯ ಎಡಭಾಗದಲ್ಲಿ x ಪ್ರತ್ಯೇಕಿಸುವ ಮೂಲಕ x ಗಾಗಿ ಅದನ್ನು ಪರಿಹರಿಸಿ.
2x-3y=-5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
2x=3y-5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 3y ಸೇರಿಸಿ.
x=\frac{1}{2}\left(3y-5\right)
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{3}{2}y-\frac{5}{2}
3y-5 ಅನ್ನು \frac{1}{2} ಬಾರಿ ಗುಣಿಸಿ.
4\left(\frac{3}{2}y-\frac{5}{2}\right)+ky-2=0
ಇತರ ಸಮೀಕರಣ 4x+ky-2=0 ನಲ್ಲಿ x ಗಾಗಿ \frac{3y-5}{2} ಬದಲಿಸಿ.
6y-10+ky-2=0
\frac{3y-5}{2} ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
\left(k+6\right)y-10-2=0
ky ಗೆ 6y ಸೇರಿಸಿ.
\left(k+6\right)y-12=0
-2 ಗೆ -10 ಸೇರಿಸಿ.
\left(k+6\right)y=12
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 12 ಸೇರಿಸಿ.
y=\frac{12}{k+6}
6+k ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{3}{2}\times \frac{12}{k+6}-\frac{5}{2}
x=\frac{3}{2}y-\frac{5}{2} ನಲ್ಲಿ y ಗಾಗಿ \frac{12}{6+k} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
x=\frac{18}{k+6}-\frac{5}{2}
\frac{12}{6+k} ಅನ್ನು \frac{3}{2} ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{6-5k}{2\left(k+6\right)}
\frac{18}{6+k} ಗೆ -\frac{5}{2} ಸೇರಿಸಿ.
x=\frac{6-5k}{2\left(k+6\right)},y=\frac{12}{k+6}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x-3y+5=0,4x+ky-2=0
ಸಮೀಕರಣಗಳನ್ನು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಿಸಿ ತದನಂತರ ಸಮೀಕರಣಗಳ ವ್ಯವಸ್ಥೆಯನ್ನು ಪರಿಹರಿಸಲು ಮ್ಯಾಟ್ರಿಸೈಸ್ ಬಳಸಿ.
\left(\begin{matrix}2&-3\\4&k\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
ಸಮೀಕರಣಗಳನ್ನು ಮಾತೃಕೆ ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
inverse(\left(\begin{matrix}2&-3\\4&k\end{matrix}\right))\left(\begin{matrix}2&-3\\4&k\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&k\end{matrix}\right))\left(\begin{matrix}-5\\2\end{matrix}\right)
\left(\begin{matrix}2&-3\\4&k\end{matrix}\right) ನ ವಿಲೋಮ ಮಾತೃಕೆ ಮೂಲಕ ಸಮೀಕರಣವನ್ನು ಎಡಕ್ಕೆ ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&k\end{matrix}\right))\left(\begin{matrix}-5\\2\end{matrix}\right)
ಮಾತೃಕೆ ಮತ್ತು ಅದರ ವಿಲೋಮದ ವ್ಯುತ್ಪನ್ನವು ಗುರುತು ಮಾತೃಕೆ ಆಗಿದೆ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\4&k\end{matrix}\right))\left(\begin{matrix}-5\\2\end{matrix}\right)
ಸಮಾನ ಚಿಹ್ನೆಯ ಎಡ ಬದಿಯಲ್ಲಿ ಮಾತೃಕೆಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{k}{2k-\left(-3\times 4\right)}&-\frac{-3}{2k-\left(-3\times 4\right)}\\-\frac{4}{2k-\left(-3\times 4\right)}&\frac{2}{2k-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-5\\2\end{matrix}\right)
2\times 2 ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ಗೆ; ವಿಲೋಮ ಮ್ಯಾಟ್ರಿಕ್ಸ್ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ಆಗಿದೆ, ಆದ್ದರಿಂದ ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಸಮೀಕರಣವನ್ನು ಮ್ಯಾಟ್ರಿಕ್ಸ್ ಗುಣಾಕಾರ ಸಮಸ್ಯೆಯೆಂದು ಮರುಬರೆಯಬಹುದು.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{k}{2\left(k+6\right)}&\frac{3}{2\left(k+6\right)}\\-\frac{2}{k+6}&\frac{1}{k+6}\end{matrix}\right)\left(\begin{matrix}-5\\2\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{k}{2\left(k+6\right)}\left(-5\right)+\frac{3}{2\left(k+6\right)}\times 2\\\left(-\frac{2}{k+6}\right)\left(-5\right)+\frac{1}{k+6}\times 2\end{matrix}\right)
ಮಾತೃಕೆಗಳನ್ನು ಗುಣಿಸಿ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6-5k}{2\left(k+6\right)}\\\frac{12}{k+6}\end{matrix}\right)
ಅಂಕಗಣಿತ ಮಾಡಿ.
x=\frac{6-5k}{2\left(k+6\right)},y=\frac{12}{k+6}
ಮಾತೃಕೆ ಅಂಶಗಳು x ಮತ್ತು y ಬೇರೆ ಮಾಡಿ.
2x-3y+5=0,4x+ky-2=0
ತೆಗೆದುಹಾಕುವಿಕೆ ಮೂಲಕ ಪರಿಹರಿಸಲು, ಚರಾಂಶಗಳಲ್ಲಿನ ಗುಣಾಂಕಗಳು ಎರಡು ಸಮೀಕರಣಗಳಲ್ಲಿ ಒಂದೇ ಆಗಿರಬೇಕು ಈ ಮೂಲಕ ಇತರೆಯಿಂದ ಒಂದು ಸಮೀಕರಣವನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ ಚರಾಂಶವನ್ನು ರದ್ದುಗೊಳಿಸಲಾಗುತ್ತದೆ.
4\times 2x+4\left(-3\right)y+4\times 5=0,2\times 4x+2ky+2\left(-2\right)=0
2x ಮತ್ತು 4x ಸಮವಾಗಿ ಮಾಡಲು, ಮೊದಲ ಸಮೀಕರಣದ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 4 ಎರಡನೇ ಪ್ರತಿ ಬದಿಯಲ್ಲಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು 2 ರಿಂದ ಗುಣಿಸಿ.
8x-12y+20=0,8x+2ky-4=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
8x-8x-12y+\left(-2k\right)y+20+4=0
ಸಮ ಚಿಹ್ನೆಯ ಪ್ರತಿ ಬದಿಯಲ್ಲಿ ಪದಗಳಂತಹವುಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ 8x-12y+20=0 ದಿಂದ 8x+2ky-4=0 ಕಳೆಯಿರಿ.
-12y+\left(-2k\right)y+20+4=0
-8x ಗೆ 8x ಸೇರಿಸಿ. ನಿಯಮಗಳು 8x ಮತ್ತು -8x ರದ್ದುಗೊಳಿಸಲಾಗಿದೆ, ಈ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದಾಗ ಏಕೈಕ ಚರಾಂಶದ ಜೊತೆಗೆ ಸಮೀಕರಣವನ್ನು ಉಳಿಸಿದೆ.
\left(-2k-12\right)y+20+4=0
-2ky ಗೆ -12y ಸೇರಿಸಿ.
\left(-2k-12\right)y+24=0
4 ಗೆ 20 ಸೇರಿಸಿ.
\left(-2k-12\right)y=-24
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 24 ಕಳೆಯಿರಿ.
y=\frac{12}{k+6}
-12-2k ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
4x+k\times \frac{12}{k+6}-2=0
4x+ky-2=0 ನಲ್ಲಿ y ಗಾಗಿ \frac{12}{6+k} ಬದಲಿಸಿ. ಏಕೆಂದರೆ ಫಲಿತಾಂಶ ಸಮೀಕರಣವು ಕೇವಲ ಒಂದು ಚರಾಂಶ ಹೊಂದಿದೆ, ನೀವು ನೇರವಾಗಿ x ಪರಿಹರಿಸಬಹುದು.
4x+\frac{12k}{k+6}-2=0
\frac{12}{6+k} ಅನ್ನು k ಬಾರಿ ಗುಣಿಸಿ.
4x+\frac{2\left(5k-6\right)}{k+6}=0
-2 ಗೆ \frac{12k}{6+k} ಸೇರಿಸಿ.
4x=-\frac{2\left(5k-6\right)}{k+6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{2\left(5k-6\right)}{6+k} ಕಳೆಯಿರಿ.
x=-\frac{5k-6}{2\left(k+6\right)}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=-\frac{5k-6}{2\left(k+6\right)},y=\frac{12}{k+6}
ಸಿಸ್ಟಂ ಅನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.