x ಪರಿಹರಿಸಿ
x=-3
x=\frac{1}{2}=0.5
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2x\left(x+4\right)-9=3x-6
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -4 ಗೆ ಸಮನಾಗಿರಬಾರದು. x+4 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x^{2}+8x-9=3x-6
x+4 ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}+8x-9-3x=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
2x^{2}+5x-9=-6
5x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -3x ಕೂಡಿಸಿ.
2x^{2}+5x-9+6=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 6 ಸೇರಿಸಿ.
2x^{2}+5x-3=0
-3 ಪಡೆದುಕೊಳ್ಳಲು -9 ಮತ್ತು 6 ಸೇರಿಸಿ.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-3\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 5 ಮತ್ತು c ಗೆ -3 ಬದಲಿಸಿ.
x=\frac{-5±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
ವರ್ಗ 5.
x=\frac{-5±\sqrt{25-8\left(-3\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5±\sqrt{25+24}}{2\times 2}
-3 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5±\sqrt{49}}{2\times 2}
24 ಗೆ 25 ಸೇರಿಸಿ.
x=\frac{-5±7}{2\times 2}
49 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-5±7}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-5±7}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 7 ಗೆ -5 ಸೇರಿಸಿ.
x=\frac{1}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{2}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{12}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-5±7}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -5 ದಿಂದ 7 ಕಳೆಯಿರಿ.
x=-3
4 ದಿಂದ -12 ಭಾಗಿಸಿ.
x=\frac{1}{2} x=-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x\left(x+4\right)-9=3x-6
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ -4 ಗೆ ಸಮನಾಗಿರಬಾರದು. x+4 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
2x^{2}+8x-9=3x-6
x+4 ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}+8x-9-3x=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x ಕಳೆಯಿರಿ.
2x^{2}+5x-9=-6
5x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -3x ಕೂಡಿಸಿ.
2x^{2}+5x=-6+9
ಎರಡೂ ಬದಿಗಳಿಗೆ 9 ಸೇರಿಸಿ.
2x^{2}+5x=3
3 ಪಡೆದುಕೊಳ್ಳಲು -6 ಮತ್ತು 9 ಸೇರಿಸಿ.
\frac{2x^{2}+5x}{2}=\frac{3}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{5}{2}x=\frac{3}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(\frac{5}{4}\right)^{2}
\frac{5}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{5}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{5}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{5}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{25}{16} ಗೆ \frac{3}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{5}{4}\right)^{2}=\frac{49}{16}
ಅಪವರ್ತನ x^{2}+\frac{5}{2}x+\frac{25}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{5}{4}=\frac{7}{4} x+\frac{5}{4}=-\frac{7}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{1}{2} x=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{4} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}