x ಪರಿಹರಿಸಿ
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=1
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
x-5 ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
-7x ಪಡೆದುಕೊಳ್ಳಲು -10x ಮತ್ತು 3x ಕೂಡಿಸಿ.
2x^{2}-7x=10\times \frac{1}{2}-10x
\frac{1}{2}-x ದಿಂದ 10 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-7x=\frac{10}{2}-10x
\frac{10}{2} ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು \frac{1}{2} ಗುಣಿಸಿ.
2x^{2}-7x=5-10x
5 ಪಡೆಯಲು 2 ರಿಂದ 10 ವಿಭಾಗಿಸಿ.
2x^{2}-7x-5=-10x
ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
2x^{2}-7x-5+10x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 10x ಸೇರಿಸಿ.
2x^{2}+3x-5=0
3x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು 10x ಕೂಡಿಸಿ.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 3 ಮತ್ತು c ಗೆ -5 ಬದಲಿಸಿ.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
ವರ್ಗ 3.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
-5 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{49}}{2\times 2}
40 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-3±7}{2\times 2}
49 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-3±7}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±7}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 7 ಗೆ -3 ಸೇರಿಸಿ.
x=1
4 ದಿಂದ 4 ಭಾಗಿಸಿ.
x=-\frac{10}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±7}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ 7 ಕಳೆಯಿರಿ.
x=-\frac{5}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-10}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=1 x=-\frac{5}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}-10x+3x=10\left(\frac{1}{2}-x\right)
x-5 ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-7x=10\left(\frac{1}{2}-x\right)
-7x ಪಡೆದುಕೊಳ್ಳಲು -10x ಮತ್ತು 3x ಕೂಡಿಸಿ.
2x^{2}-7x=10\times \frac{1}{2}-10x
\frac{1}{2}-x ದಿಂದ 10 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}-7x=\frac{10}{2}-10x
\frac{10}{2} ಪಡೆದುಕೊಳ್ಳಲು 10 ಮತ್ತು \frac{1}{2} ಗುಣಿಸಿ.
2x^{2}-7x=5-10x
5 ಪಡೆಯಲು 2 ರಿಂದ 10 ವಿಭಾಗಿಸಿ.
2x^{2}-7x+10x=5
ಎರಡೂ ಬದಿಗಳಿಗೆ 10x ಸೇರಿಸಿ.
2x^{2}+3x=5
3x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು 10x ಕೂಡಿಸಿ.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{3}{2}x=\frac{5}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
\frac{3}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{16} ಗೆ \frac{5}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
ಅಪವರ್ತನ x^{2}+\frac{3}{2}x+\frac{9}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=1 x=-\frac{5}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{4} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}