ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌
ರಸಪ್ರಶ್ನೆ
Polynomial

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

10x-2x^{2}=x^{2}+3
5-x ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x-2x^{2}-x^{2}=3
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
10x-3x^{2}=3
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು -2x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
10x-3x^{2}-3=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
-3x^{2}+10x-3=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=10 ab=-3\left(-3\right)=9
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -3x^{2}+ax+bx-3 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,9 3,3
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 9 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+9=10 3+3=6
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=9 b=1
ಪರಿಹಾರವು 10 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-3x^{2}+9x\right)+\left(x-3\right)
\left(-3x^{2}+9x\right)+\left(x-3\right) ನ ಹಾಗೆ -3x^{2}+10x-3 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
3x\left(-x+3\right)-\left(-x+3\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 3x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(-x+3\right)\left(3x-1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ -x+3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=3 x=\frac{1}{3}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, -x+3=0 ಮತ್ತು 3x-1=0 ಪರಿಹರಿಸಿ.
10x-2x^{2}=x^{2}+3
5-x ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x-2x^{2}-x^{2}=3
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
10x-3x^{2}=3
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು -2x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
10x-3x^{2}-3=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
-3x^{2}+10x-3=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-10±\sqrt{10^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ 10 ಮತ್ತು c ಗೆ -3 ಬದಲಿಸಿ.
x=\frac{-10±\sqrt{100-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
ವರ್ಗ 10.
x=\frac{-10±\sqrt{100+12\left(-3\right)}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{100-36}}{2\left(-3\right)}
-3 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{64}}{2\left(-3\right)}
-36 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-10±8}{2\left(-3\right)}
64 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-10±8}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{2}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±8}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ಗೆ -10 ಸೇರಿಸಿ.
x=\frac{1}{3}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-2}{-6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{18}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±8}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -10 ದಿಂದ 8 ಕಳೆಯಿರಿ.
x=3
-6 ದಿಂದ -18 ಭಾಗಿಸಿ.
x=\frac{1}{3} x=3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
10x-2x^{2}=x^{2}+3
5-x ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
10x-2x^{2}-x^{2}=3
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
10x-3x^{2}=3
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು -2x^{2} ಮತ್ತು -x^{2} ಕೂಡಿಸಿ.
-3x^{2}+10x=3
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-3x^{2}+10x}{-3}=\frac{3}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{10}{-3}x=\frac{3}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{10}{3}x=\frac{3}{-3}
-3 ದಿಂದ 10 ಭಾಗಿಸಿ.
x^{2}-\frac{10}{3}x=-1
-3 ದಿಂದ 3 ಭಾಗಿಸಿ.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-1+\left(-\frac{5}{3}\right)^{2}
-\frac{5}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{10}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-1+\frac{25}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{16}{9}
\frac{25}{9} ಗೆ -1 ಸೇರಿಸಿ.
\left(x-\frac{5}{3}\right)^{2}=\frac{16}{9}
ಅಪವರ್ತನ x^{2}-\frac{10}{3}x+\frac{25}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{5}{3}=\frac{4}{3} x-\frac{5}{3}=-\frac{4}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=3 x=\frac{1}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{3} ಸೇರಿಸಿ.