ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}+14x=3
x+7 ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}+14x-3=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
x=\frac{-14±\sqrt{14^{2}-4\times 2\left(-3\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 14 ಮತ್ತು c ಗೆ -3 ಬದಲಿಸಿ.
x=\frac{-14±\sqrt{196-4\times 2\left(-3\right)}}{2\times 2}
ವರ್ಗ 14.
x=\frac{-14±\sqrt{196-8\left(-3\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-14±\sqrt{196+24}}{2\times 2}
-3 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-14±\sqrt{220}}{2\times 2}
24 ಗೆ 196 ಸೇರಿಸಿ.
x=\frac{-14±2\sqrt{55}}{2\times 2}
220 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-14±2\sqrt{55}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{55}-14}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-14±2\sqrt{55}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{55} ಗೆ -14 ಸೇರಿಸಿ.
x=\frac{\sqrt{55}-7}{2}
4 ದಿಂದ -14+2\sqrt{55} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{55}-14}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-14±2\sqrt{55}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -14 ದಿಂದ 2\sqrt{55} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{55}-7}{2}
4 ದಿಂದ -14-2\sqrt{55} ಭಾಗಿಸಿ.
x=\frac{\sqrt{55}-7}{2} x=\frac{-\sqrt{55}-7}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}+14x=3
x+7 ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{2x^{2}+14x}{2}=\frac{3}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{14}{2}x=\frac{3}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+7x=\frac{3}{2}
2 ದಿಂದ 14 ಭಾಗಿಸಿ.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=\frac{3}{2}+\left(\frac{7}{2}\right)^{2}
\frac{7}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 7 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{7}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+7x+\frac{49}{4}=\frac{3}{2}+\frac{49}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{7}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+7x+\frac{49}{4}=\frac{55}{4}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{49}{4} ಗೆ \frac{3}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{7}{2}\right)^{2}=\frac{55}{4}
ಅಪವರ್ತನ x^{2}+7x+\frac{49}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{55}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{7}{2}=\frac{\sqrt{55}}{2} x+\frac{7}{2}=-\frac{\sqrt{55}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{55}-7}{2} x=\frac{-\sqrt{55}-7}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{7}{2} ಕಳೆಯಿರಿ.