x ಪರಿಹರಿಸಿ
x = \frac{\sqrt{345} + 3}{4} \approx 5.393543905
x=\frac{3-\sqrt{345}}{4}\approx -3.893543905
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2x^{2}-3x+8=50
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
2x^{2}-3x+8-50=50-50
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 50 ಕಳೆಯಿರಿ.
2x^{2}-3x+8-50=0
50 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
2x^{2}-3x-42=0
8 ದಿಂದ 50 ಕಳೆಯಿರಿ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-42\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -3 ಮತ್ತು c ಗೆ -42 ಬದಲಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-42\right)}}{2\times 2}
ವರ್ಗ -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-42\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9+336}}{2\times 2}
-42 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{345}}{2\times 2}
336 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{3±\sqrt{345}}{2\times 2}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
x=\frac{3±\sqrt{345}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{345}+3}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±\sqrt{345}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{345} ಗೆ 3 ಸೇರಿಸಿ.
x=\frac{3-\sqrt{345}}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±\sqrt{345}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ \sqrt{345} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{345}+3}{4} x=\frac{3-\sqrt{345}}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}-3x+8=50
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
2x^{2}-3x+8-8=50-8
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 8 ಕಳೆಯಿರಿ.
2x^{2}-3x=50-8
8 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
2x^{2}-3x=42
50 ದಿಂದ 8 ಕಳೆಯಿರಿ.
\frac{2x^{2}-3x}{2}=\frac{42}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{3}{2}x=\frac{42}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{3}{2}x=21
2 ದಿಂದ 42 ಭಾಗಿಸಿ.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=21+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{3}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{3}{2}x+\frac{9}{16}=21+\frac{9}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{345}{16}
\frac{9}{16} ಗೆ 21 ಸೇರಿಸಿ.
\left(x-\frac{3}{4}\right)^{2}=\frac{345}{16}
ಅಪವರ್ತನ x^{2}-\frac{3}{2}x+\frac{9}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{345}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{4}=\frac{\sqrt{345}}{4} x-\frac{3}{4}=-\frac{\sqrt{345}}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{345}+3}{4} x=\frac{3-\sqrt{345}}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{4} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}