ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}-\frac{4}{3}x-2=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -\frac{4}{3} ಮತ್ತು c ಗೆ -2 ಬದಲಿಸಿ.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\times 2\left(-2\right)}}{2\times 2}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{4}{3} ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-8\left(-2\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}+16}}{2\times 2}
-2 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{160}{9}}}{2\times 2}
16 ಗೆ \frac{16}{9} ಸೇರಿಸಿ.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{4\sqrt{10}}{3}}{2\times 2}
\frac{160}{9} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\frac{4}{3}±\frac{4\sqrt{10}}{3}}{2\times 2}
-\frac{4}{3} ನ ವಿಲೋಮವು \frac{4}{3} ಆಗಿದೆ.
x=\frac{\frac{4}{3}±\frac{4\sqrt{10}}{3}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4\sqrt{10}+4}{3\times 4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{4}{3}±\frac{4\sqrt{10}}{3}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{4\sqrt{10}}{3} ಗೆ \frac{4}{3} ಸೇರಿಸಿ.
x=\frac{\sqrt{10}+1}{3}
4 ದಿಂದ \frac{4+4\sqrt{10}}{3} ಭಾಗಿಸಿ.
x=\frac{4-4\sqrt{10}}{3\times 4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{\frac{4}{3}±\frac{4\sqrt{10}}{3}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{4}{3} ದಿಂದ \frac{4\sqrt{10}}{3} ಕಳೆಯಿರಿ.
x=\frac{1-\sqrt{10}}{3}
4 ದಿಂದ \frac{4-4\sqrt{10}}{3} ಭಾಗಿಸಿ.
x=\frac{\sqrt{10}+1}{3} x=\frac{1-\sqrt{10}}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}-\frac{4}{3}x-2=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
2x^{2}-\frac{4}{3}x-2-\left(-2\right)=-\left(-2\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.
2x^{2}-\frac{4}{3}x=-\left(-2\right)
-2 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
2x^{2}-\frac{4}{3}x=2
0 ದಿಂದ -2 ಕಳೆಯಿರಿ.
\frac{2x^{2}-\frac{4}{3}x}{2}=\frac{2}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{\frac{4}{3}}{2}\right)x=\frac{2}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{2}{3}x=\frac{2}{2}
2 ದಿಂದ -\frac{4}{3} ಭಾಗಿಸಿ.
x^{2}-\frac{2}{3}x=1
2 ದಿಂದ 2 ಭಾಗಿಸಿ.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=1+\left(-\frac{1}{3}\right)^{2}
-\frac{1}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{2}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=1+\frac{1}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{10}{9}
\frac{1}{9} ಗೆ 1 ಸೇರಿಸಿ.
\left(x-\frac{1}{3}\right)^{2}=\frac{10}{9}
ಅಪವರ್ತನ x^{2}-\frac{2}{3}x+\frac{1}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1}{3}=\frac{\sqrt{10}}{3} x-\frac{1}{3}=-\frac{\sqrt{10}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{10}+1}{3} x=\frac{1-\sqrt{10}}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{3} ಸೇರಿಸಿ.