x ಪರಿಹರಿಸಿ
x = \frac{\sqrt{41} + 1}{4} \approx 1.850781059
x=\frac{1-\sqrt{41}}{4}\approx -1.350781059
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2x^{2}-x=5
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
2x^{2}-x-5=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-5\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -1 ಮತ್ತು c ಗೆ -5 ಬದಲಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-5\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{1+40}}{2\times 2}
-5 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{41}}{2\times 2}
40 ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{1±\sqrt{41}}{2\times 2}
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
x=\frac{1±\sqrt{41}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{41}+1}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±\sqrt{41}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{41} ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{1-\sqrt{41}}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±\sqrt{41}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ದಿಂದ \sqrt{41} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{41}+1}{4} x=\frac{1-\sqrt{41}}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}-x=5
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
\frac{2x^{2}-x}{2}=\frac{5}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{1}{2}x=\frac{5}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{1}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{2}+\frac{1}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{41}{16}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{16} ಗೆ \frac{5}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{1}{4}\right)^{2}=\frac{41}{16}
ಅಪವರ್ತನ x^{2}-\frac{1}{2}x+\frac{1}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ವರ್ಗವಾದಾಗ, ಇದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1}{4}=\frac{\sqrt{41}}{4} x-\frac{1}{4}=-\frac{\sqrt{41}}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{41}+1}{4} x=\frac{1-\sqrt{41}}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{4} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}