k ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
\left\{\begin{matrix}\\k=2-2x\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
k ಪರಿಹರಿಸಿ
\left\{\begin{matrix}\\k=2-2x\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
x ಪರಿಹರಿಸಿ
x=-1
x=-\frac{k}{2}+1
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
kx+k-2=-2x^{2}
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
kx+k=-2x^{2}+2
ಎರಡೂ ಬದಿಗಳಿಗೆ 2 ಸೇರಿಸಿ.
\left(x+1\right)k=-2x^{2}+2
k ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\left(x+1\right)k=2-2x^{2}
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{\left(x+1\right)k}{x+1}=\frac{2-2x^{2}}{x+1}
1+x ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
k=\frac{2-2x^{2}}{x+1}
1+x ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 1+x ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
k=2-2x
1+x ದಿಂದ -2x^{2}+2 ಭಾಗಿಸಿ.
kx+k-2=-2x^{2}
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
kx+k=-2x^{2}+2
ಎರಡೂ ಬದಿಗಳಿಗೆ 2 ಸೇರಿಸಿ.
\left(x+1\right)k=-2x^{2}+2
k ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\left(x+1\right)k=2-2x^{2}
ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿದೆ.
\frac{\left(x+1\right)k}{x+1}=\frac{2-2x^{2}}{x+1}
1+x ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
k=\frac{2-2x^{2}}{x+1}
1+x ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 1+x ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
k=2-2x
1+x ದಿಂದ -2x^{2}+2 ಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}