ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}+4x-2=0
ಅಸಮಾನತೆಯನ್ನು ಪರಿಹರಿಸಲು, ಎಡ ಬದಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-2\right)}}{2\times 2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 2 ಅನ್ನು,b ಗೆ 4 ಅನ್ನು ಮತ್ತು c ಗೆ -2 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{-4±4\sqrt{2}}{4}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=\sqrt{2}-1 x=-\sqrt{2}-1
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-4±4\sqrt{2}}{4} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
2\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)\leq 0
ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಸಮಾನವಾಗಿರುವುದನ್ನು ಮರುಬರೆಯಿರಿ.
x-\left(\sqrt{2}-1\right)\geq 0 x-\left(-\sqrt{2}-1\right)\leq 0
ಗುಣಲಬ್ಧವು ≤0 ಆಗಿರುವುದಕ್ಕಾಗಿ, x-\left(\sqrt{2}-1\right) ಮತ್ತು x-\left(-\sqrt{2}-1\right) ಗಳಲ್ಲಿ ಒಂದು ಮೌಲ್ಯವು ≥0 ಆಗಿರಬೇಕು ಹಾಗೂ ಮತ್ತೊಂದು ≤0 ಆಗಿರಬೇಕು. x-\left(\sqrt{2}-1\right)\geq 0 ಮತ್ತು x-\left(-\sqrt{2}-1\right)\leq 0 ಧನಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x\in \emptyset
ಇದು ಯಾವುದೇ x ಗೆ ತಪ್ಪಾಗಿರುತ್ತದೆ.
x-\left(-\sqrt{2}-1\right)\geq 0 x-\left(\sqrt{2}-1\right)\leq 0
x-\left(\sqrt{2}-1\right)\leq 0 ಮತ್ತು x-\left(-\sqrt{2}-1\right)\geq 0 ಧನಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x\in \begin{bmatrix}-\left(\sqrt{2}+1\right),\sqrt{2}-1\end{bmatrix}
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x\in \left[-\left(\sqrt{2}+1\right),\sqrt{2}-1\right] ಆಗಿದೆ.
x\in \begin{bmatrix}-\sqrt{2}-1,\sqrt{2}-1\end{bmatrix}
ಅಂತಿಮ ಪರಿಹಾರವು ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳ ಒಂದುಗೂಡುವಿಕೆಯಾಗಿದೆ.