ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}+\frac{3}{8}x+16=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\frac{3}{8}±\sqrt{\left(\frac{3}{8}\right)^{2}-4\times 2\times 16}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ \frac{3}{8} ಮತ್ತು c ಗೆ 16 ಬದಲಿಸಿ.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-4\times 2\times 16}}{2\times 2}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{8} ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-8\times 16}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\frac{3}{8}±\sqrt{\frac{9}{64}-128}}{2\times 2}
16 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\frac{3}{8}±\sqrt{-\frac{8183}{64}}}{2\times 2}
-128 ಗೆ \frac{9}{64} ಸೇರಿಸಿ.
x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{2\times 2}
-\frac{8183}{64} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3+7\sqrt{167}i}{4\times 8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{7i\sqrt{167}}{8} ಗೆ -\frac{3}{8} ಸೇರಿಸಿ.
x=\frac{-3+7\sqrt{167}i}{32}
4 ದಿಂದ \frac{-3+7i\sqrt{167}}{8} ಭಾಗಿಸಿ.
x=\frac{-7\sqrt{167}i-3}{4\times 8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{3}{8}±\frac{7\sqrt{167}i}{8}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -\frac{3}{8} ದಿಂದ \frac{7i\sqrt{167}}{8} ಕಳೆಯಿರಿ.
x=\frac{-7\sqrt{167}i-3}{32}
4 ದಿಂದ \frac{-3-7i\sqrt{167}}{8} ಭಾಗಿಸಿ.
x=\frac{-3+7\sqrt{167}i}{32} x=\frac{-7\sqrt{167}i-3}{32}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}+\frac{3}{8}x+16=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
2x^{2}+\frac{3}{8}x+16-16=-16
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ.
2x^{2}+\frac{3}{8}x=-16
16 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{2x^{2}+\frac{3}{8}x}{2}=-\frac{16}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{\frac{3}{8}}{2}x=-\frac{16}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{16}x=-\frac{16}{2}
2 ದಿಂದ \frac{3}{8} ಭಾಗಿಸಿ.
x^{2}+\frac{3}{16}x=-8
2 ದಿಂದ -16 ಭಾಗಿಸಿ.
x^{2}+\frac{3}{16}x+\left(\frac{3}{32}\right)^{2}=-8+\left(\frac{3}{32}\right)^{2}
\frac{3}{32} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{16} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{32} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{16}x+\frac{9}{1024}=-8+\frac{9}{1024}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{32} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{3}{16}x+\frac{9}{1024}=-\frac{8183}{1024}
\frac{9}{1024} ಗೆ -8 ಸೇರಿಸಿ.
\left(x+\frac{3}{32}\right)^{2}=-\frac{8183}{1024}
ಅಪವರ್ತನ x^{2}+\frac{3}{16}x+\frac{9}{1024}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{32}\right)^{2}}=\sqrt{-\frac{8183}{1024}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{32}=\frac{7\sqrt{167}i}{32} x+\frac{3}{32}=-\frac{7\sqrt{167}i}{32}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{-3+7\sqrt{167}i}{32} x=\frac{-7\sqrt{167}i-3}{32}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{32} ಕಳೆಯಿರಿ.