ಅಪವರ್ತನ
2\left(u-15\right)\left(u-2\right)
ಮೌಲ್ಯಮಾಪನ
2\left(u-15\right)\left(u-2\right)
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2\left(u^{2}-17u+30\right)
2 ಅಪವರ್ತನಗೊಳಿಸಿ.
a+b=-17 ab=1\times 30=30
u^{2}-17u+30 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು u^{2}+au+bu+30 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-30 -2,-15 -3,-10 -5,-6
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 30 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-15 b=-2
ಪರಿಹಾರವು -17 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(u^{2}-15u\right)+\left(-2u+30\right)
\left(u^{2}-15u\right)+\left(-2u+30\right) ನ ಹಾಗೆ u^{2}-17u+30 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
u\left(u-15\right)-2\left(u-15\right)
ಮೊದಲನೆಯದರಲ್ಲಿ u ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(u-15\right)\left(u-2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ u-15 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
2\left(u-15\right)\left(u-2\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
2u^{2}-34u+60=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
u=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 60}}{2\times 2}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
u=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 60}}{2\times 2}
ವರ್ಗ -34.
u=\frac{-\left(-34\right)±\sqrt{1156-8\times 60}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
u=\frac{-\left(-34\right)±\sqrt{1156-480}}{2\times 2}
60 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
u=\frac{-\left(-34\right)±\sqrt{676}}{2\times 2}
-480 ಗೆ 1156 ಸೇರಿಸಿ.
u=\frac{-\left(-34\right)±26}{2\times 2}
676 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
u=\frac{34±26}{2\times 2}
-34 ನ ವಿಲೋಮವು 34 ಆಗಿದೆ.
u=\frac{34±26}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
u=\frac{60}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ u=\frac{34±26}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 26 ಗೆ 34 ಸೇರಿಸಿ.
u=15
4 ದಿಂದ 60 ಭಾಗಿಸಿ.
u=\frac{8}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ u=\frac{34±26}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 34 ದಿಂದ 26 ಕಳೆಯಿರಿ.
u=2
4 ದಿಂದ 8 ಭಾಗಿಸಿ.
2u^{2}-34u+60=2\left(u-15\right)\left(u-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ 15 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ 2 ನ್ನು ಬಳಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}