ಅಪವರ್ತನ
2\left(p-4\right)\left(p-1\right)
ಮೌಲ್ಯಮಾಪನ
2\left(p-4\right)\left(p-1\right)
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2\left(p^{2}-5p+4\right)
2 ಅಪವರ್ತನಗೊಳಿಸಿ.
a+b=-5 ab=1\times 4=4
p^{2}-5p+4 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು p^{2}+ap+bp+4 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-4 -2,-2
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 4 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-4=-5 -2-2=-4
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-4 b=-1
ಪರಿಹಾರವು -5 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(p^{2}-4p\right)+\left(-p+4\right)
\left(p^{2}-4p\right)+\left(-p+4\right) ನ ಹಾಗೆ p^{2}-5p+4 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
p\left(p-4\right)-\left(p-4\right)
ಮೊದಲನೆಯದರಲ್ಲಿ p ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(p-4\right)\left(p-1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ p-4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
2\left(p-4\right)\left(p-1\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
2p^{2}-10p+8=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
p=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 8}}{2\times 2}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
p=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 8}}{2\times 2}
ವರ್ಗ -10.
p=\frac{-\left(-10\right)±\sqrt{100-8\times 8}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
p=\frac{-\left(-10\right)±\sqrt{100-64}}{2\times 2}
8 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
p=\frac{-\left(-10\right)±\sqrt{36}}{2\times 2}
-64 ಗೆ 100 ಸೇರಿಸಿ.
p=\frac{-\left(-10\right)±6}{2\times 2}
36 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
p=\frac{10±6}{2\times 2}
-10 ನ ವಿಲೋಮವು 10 ಆಗಿದೆ.
p=\frac{10±6}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
p=\frac{16}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ p=\frac{10±6}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6 ಗೆ 10 ಸೇರಿಸಿ.
p=4
4 ದಿಂದ 16 ಭಾಗಿಸಿ.
p=\frac{4}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ p=\frac{10±6}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ದಿಂದ 6 ಕಳೆಯಿರಿ.
p=1
4 ದಿಂದ 4 ಭಾಗಿಸಿ.
2p^{2}-10p+8=2\left(p-4\right)\left(p-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ 4 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ 1 ನ್ನು ಬಳಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}