p ಪರಿಹರಿಸಿ
p=\frac{\sqrt{14}}{2}-1\approx 0.870828693
p=-\frac{\sqrt{14}}{2}-1\approx -2.870828693
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2p^{2}+4p-5=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
p=\frac{-4±\sqrt{4^{2}-4\times 2\left(-5\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 4 ಮತ್ತು c ಗೆ -5 ಬದಲಿಸಿ.
p=\frac{-4±\sqrt{16-4\times 2\left(-5\right)}}{2\times 2}
ವರ್ಗ 4.
p=\frac{-4±\sqrt{16-8\left(-5\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
p=\frac{-4±\sqrt{16+40}}{2\times 2}
-5 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
p=\frac{-4±\sqrt{56}}{2\times 2}
40 ಗೆ 16 ಸೇರಿಸಿ.
p=\frac{-4±2\sqrt{14}}{2\times 2}
56 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
p=\frac{-4±2\sqrt{14}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
p=\frac{2\sqrt{14}-4}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ p=\frac{-4±2\sqrt{14}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{14} ಗೆ -4 ಸೇರಿಸಿ.
p=\frac{\sqrt{14}}{2}-1
4 ದಿಂದ -4+2\sqrt{14} ಭಾಗಿಸಿ.
p=\frac{-2\sqrt{14}-4}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ p=\frac{-4±2\sqrt{14}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -4 ದಿಂದ 2\sqrt{14} ಕಳೆಯಿರಿ.
p=-\frac{\sqrt{14}}{2}-1
4 ದಿಂದ -4-2\sqrt{14} ಭಾಗಿಸಿ.
p=\frac{\sqrt{14}}{2}-1 p=-\frac{\sqrt{14}}{2}-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2p^{2}+4p-5=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
2p^{2}+4p-5-\left(-5\right)=-\left(-5\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 5 ಸೇರಿಸಿ.
2p^{2}+4p=-\left(-5\right)
-5 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
2p^{2}+4p=5
0 ದಿಂದ -5 ಕಳೆಯಿರಿ.
\frac{2p^{2}+4p}{2}=\frac{5}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
p^{2}+\frac{4}{2}p=\frac{5}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
p^{2}+2p=\frac{5}{2}
2 ದಿಂದ 4 ಭಾಗಿಸಿ.
p^{2}+2p+1^{2}=\frac{5}{2}+1^{2}
1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
p^{2}+2p+1=\frac{5}{2}+1
ವರ್ಗ 1.
p^{2}+2p+1=\frac{7}{2}
1 ಗೆ \frac{5}{2} ಸೇರಿಸಿ.
\left(p+1\right)^{2}=\frac{7}{2}
ಅಪವರ್ತನ p^{2}+2p+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(p+1\right)^{2}}=\sqrt{\frac{7}{2}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
p+1=\frac{\sqrt{14}}{2} p+1=-\frac{\sqrt{14}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
p=\frac{\sqrt{14}}{2}-1 p=-\frac{\sqrt{14}}{2}-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}