ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
n ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2n^{2}-5n-4=6
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
2n^{2}-5n-4-6=6-6
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ.
2n^{2}-5n-4-6=0
6 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
2n^{2}-5n-10=0
-4 ದಿಂದ 6 ಕಳೆಯಿರಿ.
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-10\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -5 ಮತ್ತು c ಗೆ -10 ಬದಲಿಸಿ.
n=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-10\right)}}{2\times 2}
ವರ್ಗ -5.
n=\frac{-\left(-5\right)±\sqrt{25-8\left(-10\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-\left(-5\right)±\sqrt{25+80}}{2\times 2}
-10 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-\left(-5\right)±\sqrt{105}}{2\times 2}
80 ಗೆ 25 ಸೇರಿಸಿ.
n=\frac{5±\sqrt{105}}{2\times 2}
-5 ನ ವಿಲೋಮವು 5 ಆಗಿದೆ.
n=\frac{5±\sqrt{105}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{\sqrt{105}+5}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{5±\sqrt{105}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{105} ಗೆ 5 ಸೇರಿಸಿ.
n=\frac{5-\sqrt{105}}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{5±\sqrt{105}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ದಿಂದ \sqrt{105} ಕಳೆಯಿರಿ.
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2n^{2}-5n-4=6
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
2n^{2}-5n-4-\left(-4\right)=6-\left(-4\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 4 ಸೇರಿಸಿ.
2n^{2}-5n=6-\left(-4\right)
-4 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
2n^{2}-5n=10
6 ದಿಂದ -4 ಕಳೆಯಿರಿ.
\frac{2n^{2}-5n}{2}=\frac{10}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
n^{2}-\frac{5}{2}n=\frac{10}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
n^{2}-\frac{5}{2}n=5
2 ದಿಂದ 10 ಭಾಗಿಸಿ.
n^{2}-\frac{5}{2}n+\left(-\frac{5}{4}\right)^{2}=5+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{5}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
n^{2}-\frac{5}{2}n+\frac{25}{16}=5+\frac{25}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{4} ವರ್ಗಗೊಳಿಸಿ.
n^{2}-\frac{5}{2}n+\frac{25}{16}=\frac{105}{16}
\frac{25}{16} ಗೆ 5 ಸೇರಿಸಿ.
\left(n-\frac{5}{4}\right)^{2}=\frac{105}{16}
ಅಪವರ್ತನ n^{2}-\frac{5}{2}n+\frac{25}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(n-\frac{5}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n-\frac{5}{4}=\frac{\sqrt{105}}{4} n-\frac{5}{4}=-\frac{\sqrt{105}}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
n=\frac{\sqrt{105}+5}{4} n=\frac{5-\sqrt{105}}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{4} ಸೇರಿಸಿ.