ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

a+b=9 ab=2\times 9=18
ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 2d^{2}+ad+bd+9 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,18 2,9 3,6
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 18 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+18=19 2+9=11 3+6=9
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=3 b=6
ಪರಿಹಾರವು 9 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(2d^{2}+3d\right)+\left(6d+9\right)
\left(2d^{2}+3d\right)+\left(6d+9\right) ನ ಹಾಗೆ 2d^{2}+9d+9 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
d\left(2d+3\right)+3\left(2d+3\right)
ಮೊದಲನೆಯದರಲ್ಲಿ d ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(2d+3\right)\left(d+3\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 2d+3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
2d^{2}+9d+9=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
d=\frac{-9±\sqrt{9^{2}-4\times 2\times 9}}{2\times 2}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
d=\frac{-9±\sqrt{81-4\times 2\times 9}}{2\times 2}
ವರ್ಗ 9.
d=\frac{-9±\sqrt{81-8\times 9}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
d=\frac{-9±\sqrt{81-72}}{2\times 2}
9 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
d=\frac{-9±\sqrt{9}}{2\times 2}
-72 ಗೆ 81 ಸೇರಿಸಿ.
d=\frac{-9±3}{2\times 2}
9 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
d=\frac{-9±3}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
d=-\frac{6}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ d=\frac{-9±3}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ಗೆ -9 ಸೇರಿಸಿ.
d=-\frac{3}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-6}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
d=-\frac{12}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ d=\frac{-9±3}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -9 ದಿಂದ 3 ಕಳೆಯಿರಿ.
d=-3
4 ದಿಂದ -12 ಭಾಗಿಸಿ.
2d^{2}+9d+9=2\left(d-\left(-\frac{3}{2}\right)\right)\left(d-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ -\frac{3}{2} ಅನ್ನು ಬದಲಿಸಿ ಮತ್ತು x_{2} ಗೆ -3 ಅನ್ನು ಬದಲಿಸಿ.
2d^{2}+9d+9=2\left(d+\frac{3}{2}\right)\left(d+3\right)
p-\left(-q\right) ರೂಪದ ಎಲ್ಲಾ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು p+q ಗೆ ಸರಳೀಕರಿಸಿ.
2d^{2}+9d+9=2\times \frac{2d+3}{2}\left(d+3\right)
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ d ಗೆ \frac{3}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
2d^{2}+9d+9=\left(2d+3\right)\left(d+3\right)
2 ಮತ್ತು 2 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 2 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.