ಅಪವರ್ತನ
2\left(c-\left(-\sqrt{43}-1\right)\right)\left(c-\left(\sqrt{43}-1\right)\right)
ಮೌಲ್ಯಮಾಪನ
2\left(c^{2}+2c-42\right)
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2c^{2}+4c-84=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
c=\frac{-4±\sqrt{4^{2}-4\times 2\left(-84\right)}}{2\times 2}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
c=\frac{-4±\sqrt{16-4\times 2\left(-84\right)}}{2\times 2}
ವರ್ಗ 4.
c=\frac{-4±\sqrt{16-8\left(-84\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
c=\frac{-4±\sqrt{16+672}}{2\times 2}
-84 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
c=\frac{-4±\sqrt{688}}{2\times 2}
672 ಗೆ 16 ಸೇರಿಸಿ.
c=\frac{-4±4\sqrt{43}}{2\times 2}
688 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
c=\frac{-4±4\sqrt{43}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
c=\frac{4\sqrt{43}-4}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{-4±4\sqrt{43}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4\sqrt{43} ಗೆ -4 ಸೇರಿಸಿ.
c=\sqrt{43}-1
4 ದಿಂದ -4+4\sqrt{43} ಭಾಗಿಸಿ.
c=\frac{-4\sqrt{43}-4}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{-4±4\sqrt{43}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -4 ದಿಂದ 4\sqrt{43} ಕಳೆಯಿರಿ.
c=-\sqrt{43}-1
4 ದಿಂದ -4-4\sqrt{43} ಭಾಗಿಸಿ.
2c^{2}+4c-84=2\left(c-\left(\sqrt{43}-1\right)\right)\left(c-\left(-\sqrt{43}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ -1+\sqrt{43} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ -1-\sqrt{43} ನ್ನು ಬಳಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}