ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
a ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2a-1=a^{2}-4
\left(a-2\right)\left(a+2\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 2.
2a-1-a^{2}=-4
ಎರಡೂ ಕಡೆಗಳಿಂದ a^{2} ಕಳೆಯಿರಿ.
2a-1-a^{2}+4=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 4 ಸೇರಿಸಿ.
2a+3-a^{2}=0
3 ಪಡೆದುಕೊಳ್ಳಲು -1 ಮತ್ತು 4 ಸೇರಿಸಿ.
-a^{2}+2a+3=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
a=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 2 ಮತ್ತು c ಗೆ 3 ಬದಲಿಸಿ.
a=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
ವರ್ಗ 2.
a=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
3 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-2±\sqrt{16}}{2\left(-1\right)}
12 ಗೆ 4 ಸೇರಿಸಿ.
a=\frac{-2±4}{2\left(-1\right)}
16 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a=\frac{-2±4}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{2}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-2±4}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ಗೆ -2 ಸೇರಿಸಿ.
a=-1
-2 ದಿಂದ 2 ಭಾಗಿಸಿ.
a=-\frac{6}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-2±4}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -2 ದಿಂದ 4 ಕಳೆಯಿರಿ.
a=3
-2 ದಿಂದ -6 ಭಾಗಿಸಿ.
a=-1 a=3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2a-1=a^{2}-4
\left(a-2\right)\left(a+2\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 2.
2a-1-a^{2}=-4
ಎರಡೂ ಕಡೆಗಳಿಂದ a^{2} ಕಳೆಯಿರಿ.
2a-a^{2}=-4+1
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
2a-a^{2}=-3
-3 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 1 ಸೇರಿಸಿ.
-a^{2}+2a=-3
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-a^{2}+2a}{-1}=-\frac{3}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a^{2}+\frac{2}{-1}a=-\frac{3}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
a^{2}-2a=-\frac{3}{-1}
-1 ದಿಂದ 2 ಭಾಗಿಸಿ.
a^{2}-2a=3
-1 ದಿಂದ -3 ಭಾಗಿಸಿ.
a^{2}-2a+1=3+1
-1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
a^{2}-2a+1=4
1 ಗೆ 3 ಸೇರಿಸಿ.
\left(a-1\right)^{2}=4
ಅಪವರ್ತನ a^{2}-2a+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(a-1\right)^{2}}=\sqrt{4}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a-1=2 a-1=-2
ಸರಳೀಕೃತಗೊಳಿಸಿ.
a=3 a=-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1 ಸೇರಿಸಿ.