ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ವ್ಯತ್ಯಾಸ w.r.t. a
Tick mark Image
ರಸಪ್ರಶ್ನೆ
Polynomial

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(2a^{6}\right)^{1}\times \frac{1}{a^{4}}
ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಸರಳೀಕೃತಗೊಳಿಸಲು ಘಾತಾಂಕಗಳ ನಿಯಮಗಳನ್ನು ಬಳಿಸಿ.
2^{1}\left(a^{6}\right)^{1}\times \frac{1}{1}\times \frac{1}{a^{4}}
ಘಾತಕ್ಕೆ ಎರಡು ಅಥವಾ ಅದಕ್ಕಿಂತ ಹೆಚ್ಚಿನ ಸಂಖ್ಯೆಗಳ ಉತ್ಪನ್ನವನ್ನು ಹೆಚ್ಚಿಸಲು, ಘಾತಕ್ಕೆ ಪ್ರತಿ ಸಂಖ್ಯೆಯನ್ನು ಹೆಚ್ಚಿಸಿ ಹಾಗೂ ಅದರ ಉತ್ಪನ್ನವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
2^{1}\times \frac{1}{1}\left(a^{6}\right)^{1}\times \frac{1}{a^{4}}
ಗುಣಾಕಾರ ಪರಿವರ್ತನೀಯ ಗುಣ ಬಳಸಿ.
2^{1}\times \frac{1}{1}a^{6}a^{4\left(-1\right)}
ಸಂಖ್ಯೆಯ ಘಾತವನ್ನು ಮತ್ತೊಂದು ಘಾತಕ್ಕೆ ಹೆಚ್ಚಿಸಲು, ಘಾತಾಂಕಗಳನ್ನು ಗುಣಿಸಿ.
2^{1}\times \frac{1}{1}a^{6}a^{-4}
-1 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
2^{1}\times \frac{1}{1}a^{6-4}
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಗುಣಿಸಲು ಅದರ ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
2^{1}\times \frac{1}{1}a^{2}
6 ಮತ್ತು -4 ಘಾತಾಂಕಗಳನ್ನು ಸೇರಿಸಿ.
2\times \frac{1}{1}a^{2}
1 ಘಾತಕ್ಕೆ 2 ಹೆಚ್ಚಿಸಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2}{1}a^{6-4})
ಒಂದೇ ಆಧಾರ ಸಂಖ್ಯೆಯ ಘಾತಗಳನ್ನು ಭಾಗಿಸಲು, ಸಂಖ್ಯಾಕಾರದ ಘಾತದಿಂದ ಛೇದದ ಘಾತವನ್ನು ಕಳೆಯಿರಿ.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{2})
ಅಂಕಗಣಿತ ಮಾಡಿ.
2\times 2a^{2-1}
ಬಹುಪದೀಯದ ವ್ಯುತ್ಪತ್ತಿಯು ಅದರ ಪದಗಳ ವ್ಯುತ್ಪತ್ತಿಗಳ ಮೊತ್ತವಾಗಿದೆ. ಯಾವುದೇ ಸ್ಥಿರ ಪದದ ವ್ಯುತ್ಪತ್ತಿಯು 0 ಆಗಿದೆ. ax^{n} ನ ವ್ಯುತ್ಪತ್ತಿಯು nax^{n-1} ಆಗಿದೆ.
4a^{1}
ಅಂಕಗಣಿತ ಮಾಡಿ.
4a
ಯಾವುದೇ ಪದಕ್ಕೆ t, t^{1}=t.