ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
n ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2n^{2}+2n=5n
n^{2}+n ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2n^{2}+2n-5n=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 5n ಕಳೆಯಿರಿ.
2n^{2}-3n=0
-3n ಪಡೆದುಕೊಳ್ಳಲು 2n ಮತ್ತು -5n ಕೂಡಿಸಿ.
n\left(2n-3\right)=0
n ಅಪವರ್ತನಗೊಳಿಸಿ.
n=0 n=\frac{3}{2}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, n=0 ಮತ್ತು 2n-3=0 ಪರಿಹರಿಸಿ.
2n^{2}+2n=5n
n^{2}+n ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2n^{2}+2n-5n=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 5n ಕಳೆಯಿರಿ.
2n^{2}-3n=0
-3n ಪಡೆದುಕೊಳ್ಳಲು 2n ಮತ್ತು -5n ಕೂಡಿಸಿ.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -3 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
n=\frac{-\left(-3\right)±3}{2\times 2}
\left(-3\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n=\frac{3±3}{2\times 2}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
n=\frac{3±3}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{6}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{3±3}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ಗೆ 3 ಸೇರಿಸಿ.
n=\frac{3}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{6}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
n=\frac{0}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{3±3}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ 3 ಕಳೆಯಿರಿ.
n=0
4 ದಿಂದ 0 ಭಾಗಿಸಿ.
n=\frac{3}{2} n=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2n^{2}+2n=5n
n^{2}+n ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2n^{2}+2n-5n=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 5n ಕಳೆಯಿರಿ.
2n^{2}-3n=0
-3n ಪಡೆದುಕೊಳ್ಳಲು 2n ಮತ್ತು -5n ಕೂಡಿಸಿ.
\frac{2n^{2}-3n}{2}=\frac{0}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
n^{2}-\frac{3}{2}n=\frac{0}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
n^{2}-\frac{3}{2}n=0
2 ದಿಂದ 0 ಭಾಗಿಸಿ.
n^{2}-\frac{3}{2}n+\left(-\frac{3}{4}\right)^{2}=\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{3}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
n^{2}-\frac{3}{2}n+\frac{9}{16}=\frac{9}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{4} ವರ್ಗಗೊಳಿಸಿ.
\left(n-\frac{3}{4}\right)^{2}=\frac{9}{16}
ಅಪವರ್ತನ n^{2}-\frac{3}{2}n+\frac{9}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(n-\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n-\frac{3}{4}=\frac{3}{4} n-\frac{3}{4}=-\frac{3}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
n=\frac{3}{2} n=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{4} ಸೇರಿಸಿ.