ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2\left(9x^{2}+30x+25\right)-10=22
\left(3x+5\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
18x^{2}+60x+50-10=22
9x^{2}+30x+25 ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
18x^{2}+60x+40=22
40 ಪಡೆದುಕೊಳ್ಳಲು 50 ದಿಂದ 10 ಕಳೆಯಿರಿ.
18x^{2}+60x+40-22=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 22 ಕಳೆಯಿರಿ.
18x^{2}+60x+18=0
18 ಪಡೆದುಕೊಳ್ಳಲು 40 ದಿಂದ 22 ಕಳೆಯಿರಿ.
3x^{2}+10x+3=0
6 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a+b=10 ab=3\times 3=9
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 3x^{2}+ax+bx+3 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,9 3,3
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 9 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+9=10 3+3=6
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=1 b=9
ಪರಿಹಾರವು 10 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(3x^{2}+x\right)+\left(9x+3\right)
\left(3x^{2}+x\right)+\left(9x+3\right) ನ ಹಾಗೆ 3x^{2}+10x+3 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(3x+1\right)+3\left(3x+1\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3x+1\right)\left(x+3\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 3x+1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=-\frac{1}{3} x=-3
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 3x+1=0 ಮತ್ತು x+3=0 ಪರಿಹರಿಸಿ.
2\left(9x^{2}+30x+25\right)-10=22
\left(3x+5\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
18x^{2}+60x+50-10=22
9x^{2}+30x+25 ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
18x^{2}+60x+40=22
40 ಪಡೆದುಕೊಳ್ಳಲು 50 ದಿಂದ 10 ಕಳೆಯಿರಿ.
18x^{2}+60x+40-22=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 22 ಕಳೆಯಿರಿ.
18x^{2}+60x+18=0
18 ಪಡೆದುಕೊಳ್ಳಲು 40 ದಿಂದ 22 ಕಳೆಯಿರಿ.
x=\frac{-60±\sqrt{60^{2}-4\times 18\times 18}}{2\times 18}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 18, b ಗೆ 60 ಮತ್ತು c ಗೆ 18 ಬದಲಿಸಿ.
x=\frac{-60±\sqrt{3600-4\times 18\times 18}}{2\times 18}
ವರ್ಗ 60.
x=\frac{-60±\sqrt{3600-72\times 18}}{2\times 18}
18 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-60±\sqrt{3600-1296}}{2\times 18}
18 ಅನ್ನು -72 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-60±\sqrt{2304}}{2\times 18}
-1296 ಗೆ 3600 ಸೇರಿಸಿ.
x=\frac{-60±48}{2\times 18}
2304 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-60±48}{36}
18 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=-\frac{12}{36}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-60±48}{36} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 48 ಗೆ -60 ಸೇರಿಸಿ.
x=-\frac{1}{3}
12 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-12}{36} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{108}{36}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-60±48}{36} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -60 ದಿಂದ 48 ಕಳೆಯಿರಿ.
x=-3
36 ದಿಂದ -108 ಭಾಗಿಸಿ.
x=-\frac{1}{3} x=-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2\left(9x^{2}+30x+25\right)-10=22
\left(3x+5\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
18x^{2}+60x+50-10=22
9x^{2}+30x+25 ದಿಂದ 2 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
18x^{2}+60x+40=22
40 ಪಡೆದುಕೊಳ್ಳಲು 50 ದಿಂದ 10 ಕಳೆಯಿರಿ.
18x^{2}+60x=22-40
ಎರಡೂ ಕಡೆಗಳಿಂದ 40 ಕಳೆಯಿರಿ.
18x^{2}+60x=-18
-18 ಪಡೆದುಕೊಳ್ಳಲು 22 ದಿಂದ 40 ಕಳೆಯಿರಿ.
\frac{18x^{2}+60x}{18}=-\frac{18}{18}
18 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{60}{18}x=-\frac{18}{18}
18 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 18 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{10}{3}x=-\frac{18}{18}
6 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{60}{18} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{10}{3}x=-1
18 ದಿಂದ -18 ಭಾಗಿಸಿ.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-1+\left(\frac{5}{3}\right)^{2}
\frac{5}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{10}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{5}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-1+\frac{25}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{5}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{16}{9}
\frac{25}{9} ಗೆ -1 ಸೇರಿಸಿ.
\left(x+\frac{5}{3}\right)^{2}=\frac{16}{9}
ಅಪವರ್ತನ x^{2}+\frac{10}{3}x+\frac{25}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{5}{3}=\frac{4}{3} x+\frac{5}{3}=-\frac{4}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=-\frac{1}{3} x=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{3} ಕಳೆಯಿರಿ.