ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-41x+180=0
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a+b=-41 ab=1\times 180=180
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು x^{2}+ax+bx+180 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-180 -2,-90 -3,-60 -4,-45 -5,-36 -6,-30 -9,-20 -10,-18 -12,-15
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 180 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-180=-181 -2-90=-92 -3-60=-63 -4-45=-49 -5-36=-41 -6-30=-36 -9-20=-29 -10-18=-28 -12-15=-27
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-36 b=-5
ಪರಿಹಾರವು -41 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x^{2}-36x\right)+\left(-5x+180\right)
\left(x^{2}-36x\right)+\left(-5x+180\right) ನ ಹಾಗೆ x^{2}-41x+180 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(x-36\right)-5\left(x-36\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-36\right)\left(x-5\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-36 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=36 x=5
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-36=0 ಮತ್ತು x-5=0 ಪರಿಹರಿಸಿ.
2x^{2}-82x+360=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-82\right)±\sqrt{\left(-82\right)^{2}-4\times 2\times 360}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -82 ಮತ್ತು c ಗೆ 360 ಬದಲಿಸಿ.
x=\frac{-\left(-82\right)±\sqrt{6724-4\times 2\times 360}}{2\times 2}
ವರ್ಗ -82.
x=\frac{-\left(-82\right)±\sqrt{6724-8\times 360}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-82\right)±\sqrt{6724-2880}}{2\times 2}
360 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-82\right)±\sqrt{3844}}{2\times 2}
-2880 ಗೆ 6724 ಸೇರಿಸಿ.
x=\frac{-\left(-82\right)±62}{2\times 2}
3844 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{82±62}{2\times 2}
-82 ನ ವಿಲೋಮವು 82 ಆಗಿದೆ.
x=\frac{82±62}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{144}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{82±62}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 62 ಗೆ 82 ಸೇರಿಸಿ.
x=36
4 ದಿಂದ 144 ಭಾಗಿಸಿ.
x=\frac{20}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{82±62}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 82 ದಿಂದ 62 ಕಳೆಯಿರಿ.
x=5
4 ದಿಂದ 20 ಭಾಗಿಸಿ.
x=36 x=5
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}-82x+360=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
2x^{2}-82x+360-360=-360
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 360 ಕಳೆಯಿರಿ.
2x^{2}-82x=-360
360 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{2x^{2}-82x}{2}=-\frac{360}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{82}{2}\right)x=-\frac{360}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-41x=-\frac{360}{2}
2 ದಿಂದ -82 ಭಾಗಿಸಿ.
x^{2}-41x=-180
2 ದಿಂದ -360 ಭಾಗಿಸಿ.
x^{2}-41x+\left(-\frac{41}{2}\right)^{2}=-180+\left(-\frac{41}{2}\right)^{2}
-\frac{41}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -41 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{41}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-41x+\frac{1681}{4}=-180+\frac{1681}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{41}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-41x+\frac{1681}{4}=\frac{961}{4}
\frac{1681}{4} ಗೆ -180 ಸೇರಿಸಿ.
\left(x-\frac{41}{2}\right)^{2}=\frac{961}{4}
ಅಪವರ್ತನ x^{2}-41x+\frac{1681}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{41}{2}\right)^{2}}=\sqrt{\frac{961}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{41}{2}=\frac{31}{2} x-\frac{41}{2}=-\frac{31}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=36 x=5
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{41}{2} ಸೇರಿಸಿ.