ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}-4x-5x^{2}=-3x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ 5x^{2} ಕಳೆಯಿರಿ.
-3x^{2}-4x=-3x+1
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -5x^{2} ಕೂಡಿಸಿ.
-3x^{2}-4x+3x=1
ಎರಡೂ ಬದಿಗಳಿಗೆ 3x ಸೇರಿಸಿ.
-3x^{2}-x=1
-x ಪಡೆದುಕೊಳ್ಳಲು -4x ಮತ್ತು 3x ಕೂಡಿಸಿ.
-3x^{2}-x-1=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -3, b ಗೆ -1 ಮತ್ತು c ಗೆ -1 ಬದಲಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{1+12\left(-1\right)}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{1-12}}{2\left(-3\right)}
-1 ಅನ್ನು 12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{-11}}{2\left(-3\right)}
-12 ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{11}i}{2\left(-3\right)}
-11 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{1±\sqrt{11}i}{2\left(-3\right)}
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
x=\frac{1±\sqrt{11}i}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{1+\sqrt{11}i}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±\sqrt{11}i}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. i\sqrt{11} ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{-\sqrt{11}i-1}{6}
-6 ದಿಂದ 1+i\sqrt{11} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{11}i+1}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±\sqrt{11}i}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ದಿಂದ i\sqrt{11} ಕಳೆಯಿರಿ.
x=\frac{-1+\sqrt{11}i}{6}
-6 ದಿಂದ 1-i\sqrt{11} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{11}i-1}{6} x=\frac{-1+\sqrt{11}i}{6}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}-4x-5x^{2}=-3x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ 5x^{2} ಕಳೆಯಿರಿ.
-3x^{2}-4x=-3x+1
-3x^{2} ಪಡೆದುಕೊಳ್ಳಲು 2x^{2} ಮತ್ತು -5x^{2} ಕೂಡಿಸಿ.
-3x^{2}-4x+3x=1
ಎರಡೂ ಬದಿಗಳಿಗೆ 3x ಸೇರಿಸಿ.
-3x^{2}-x=1
-x ಪಡೆದುಕೊಳ್ಳಲು -4x ಮತ್ತು 3x ಕೂಡಿಸಿ.
\frac{-3x^{2}-x}{-3}=\frac{1}{-3}
-3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{1}{-3}\right)x=\frac{1}{-3}
-3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{1}{3}x=\frac{1}{-3}
-3 ದಿಂದ -1 ಭಾಗಿಸಿ.
x^{2}+\frac{1}{3}x=-\frac{1}{3}
-3 ದಿಂದ 1 ಭಾಗಿಸಿ.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{1}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{6} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{1}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{1}{6} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{1}{3}+\frac{1}{36}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{6} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{11}{36}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{36} ಗೆ -\frac{1}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{1}{6}\right)^{2}=-\frac{11}{36}
ಅಪವರ್ತನ x^{2}+\frac{1}{3}x+\frac{1}{36}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{11}{36}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{1}{6}=\frac{\sqrt{11}i}{6} x+\frac{1}{6}=-\frac{\sqrt{11}i}{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{-1+\sqrt{11}i}{6} x=\frac{-\sqrt{11}i-1}{6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1}{6} ಕಳೆಯಿರಿ.