ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2x^{2}-18x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 18x ಕಳೆಯಿರಿ.
2x^{2}-18x+1=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -18 ಮತ್ತು c ಗೆ 1 ಬದಲಿಸಿ.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2}}{2\times 2}
ವರ್ಗ -18.
x=\frac{-\left(-18\right)±\sqrt{324-8}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-18\right)±\sqrt{316}}{2\times 2}
-8 ಗೆ 324 ಸೇರಿಸಿ.
x=\frac{-\left(-18\right)±2\sqrt{79}}{2\times 2}
316 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{18±2\sqrt{79}}{2\times 2}
-18 ನ ವಿಲೋಮವು 18 ಆಗಿದೆ.
x=\frac{18±2\sqrt{79}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{79}+18}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{18±2\sqrt{79}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{79} ಗೆ 18 ಸೇರಿಸಿ.
x=\frac{\sqrt{79}+9}{2}
4 ದಿಂದ 18+2\sqrt{79} ಭಾಗಿಸಿ.
x=\frac{18-2\sqrt{79}}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{18±2\sqrt{79}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 18 ದಿಂದ 2\sqrt{79} ಕಳೆಯಿರಿ.
x=\frac{9-\sqrt{79}}{2}
4 ದಿಂದ 18-2\sqrt{79} ಭಾಗಿಸಿ.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}-18x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 18x ಕಳೆಯಿರಿ.
\frac{2x^{2}-18x}{2}=-\frac{1}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{18}{2}\right)x=-\frac{1}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-9x=-\frac{1}{2}
2 ದಿಂದ -18 ಭಾಗಿಸಿ.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{1}{2}+\left(-\frac{9}{2}\right)^{2}
-\frac{9}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -9 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{9}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-9x+\frac{81}{4}=-\frac{1}{2}+\frac{81}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{9}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-9x+\frac{81}{4}=\frac{79}{4}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{81}{4} ಗೆ -\frac{1}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{9}{2}\right)^{2}=\frac{79}{4}
ಅಪವರ್ತನ x^{2}-9x+\frac{81}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{79}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{9}{2}=\frac{\sqrt{79}}{2} x-\frac{9}{2}=-\frac{\sqrt{79}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{9}{2} ಸೇರಿಸಿ.