x ಪರಿಹರಿಸಿ
x=\frac{3\sqrt{6}}{2}-3\approx 0.674234614
x=-\frac{3\sqrt{6}}{2}-3\approx -6.674234614
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2x^{2}+12x-9=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-12±\sqrt{12^{2}-4\times 2\left(-9\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 12 ಮತ್ತು c ಗೆ -9 ಬದಲಿಸಿ.
x=\frac{-12±\sqrt{144-4\times 2\left(-9\right)}}{2\times 2}
ವರ್ಗ 12.
x=\frac{-12±\sqrt{144-8\left(-9\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-12±\sqrt{144+72}}{2\times 2}
-9 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-12±\sqrt{216}}{2\times 2}
72 ಗೆ 144 ಸೇರಿಸಿ.
x=\frac{-12±6\sqrt{6}}{2\times 2}
216 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-12±6\sqrt{6}}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{6\sqrt{6}-12}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-12±6\sqrt{6}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6\sqrt{6} ಗೆ -12 ಸೇರಿಸಿ.
x=\frac{3\sqrt{6}}{2}-3
4 ದಿಂದ -12+6\sqrt{6} ಭಾಗಿಸಿ.
x=\frac{-6\sqrt{6}-12}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-12±6\sqrt{6}}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -12 ದಿಂದ 6\sqrt{6} ಕಳೆಯಿರಿ.
x=-\frac{3\sqrt{6}}{2}-3
4 ದಿಂದ -12-6\sqrt{6} ಭಾಗಿಸಿ.
x=\frac{3\sqrt{6}}{2}-3 x=-\frac{3\sqrt{6}}{2}-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2x^{2}+12x-9=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
2x^{2}+12x-9-\left(-9\right)=-\left(-9\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 9 ಸೇರಿಸಿ.
2x^{2}+12x=-\left(-9\right)
-9 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
2x^{2}+12x=9
0 ದಿಂದ -9 ಕಳೆಯಿರಿ.
\frac{2x^{2}+12x}{2}=\frac{9}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{12}{2}x=\frac{9}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+6x=\frac{9}{2}
2 ದಿಂದ 12 ಭಾಗಿಸಿ.
x^{2}+6x+3^{2}=\frac{9}{2}+3^{2}
3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+6x+9=\frac{9}{2}+9
ವರ್ಗ 3.
x^{2}+6x+9=\frac{27}{2}
9 ಗೆ \frac{9}{2} ಸೇರಿಸಿ.
\left(x+3\right)^{2}=\frac{27}{2}
ಅಪವರ್ತನ x^{2}+6x+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+3\right)^{2}}=\sqrt{\frac{27}{2}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+3=\frac{3\sqrt{6}}{2} x+3=-\frac{3\sqrt{6}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{3\sqrt{6}}{2}-3 x=-\frac{3\sqrt{6}}{2}-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}