ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
n ಪರಿಹರಿಸಿ
Tick mark Image
ರಸಪ್ರಶ್ನೆ
Complex Number

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

2n^{2}-10n+20=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
n=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 20}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ -10 ಮತ್ತು c ಗೆ 20 ಬದಲಿಸಿ.
n=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 20}}{2\times 2}
ವರ್ಗ -10.
n=\frac{-\left(-10\right)±\sqrt{100-8\times 20}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-\left(-10\right)±\sqrt{100-160}}{2\times 2}
20 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{-\left(-10\right)±\sqrt{-60}}{2\times 2}
-160 ಗೆ 100 ಸೇರಿಸಿ.
n=\frac{-\left(-10\right)±2\sqrt{15}i}{2\times 2}
-60 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n=\frac{10±2\sqrt{15}i}{2\times 2}
-10 ನ ವಿಲೋಮವು 10 ಆಗಿದೆ.
n=\frac{10±2\sqrt{15}i}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{10+2\sqrt{15}i}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{10±2\sqrt{15}i}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{15} ಗೆ 10 ಸೇರಿಸಿ.
n=\frac{5+\sqrt{15}i}{2}
4 ದಿಂದ 10+2i\sqrt{15} ಭಾಗಿಸಿ.
n=\frac{-2\sqrt{15}i+10}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{10±2\sqrt{15}i}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ದಿಂದ 2i\sqrt{15} ಕಳೆಯಿರಿ.
n=\frac{-\sqrt{15}i+5}{2}
4 ದಿಂದ 10-2i\sqrt{15} ಭಾಗಿಸಿ.
n=\frac{5+\sqrt{15}i}{2} n=\frac{-\sqrt{15}i+5}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
2n^{2}-10n+20=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
2n^{2}-10n+20-20=-20
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 20 ಕಳೆಯಿರಿ.
2n^{2}-10n=-20
20 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{2n^{2}-10n}{2}=-\frac{20}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
n^{2}+\left(-\frac{10}{2}\right)n=-\frac{20}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
n^{2}-5n=-\frac{20}{2}
2 ದಿಂದ -10 ಭಾಗಿಸಿ.
n^{2}-5n=-10
2 ದಿಂದ -20 ಭಾಗಿಸಿ.
n^{2}-5n+\left(-\frac{5}{2}\right)^{2}=-10+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -5 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
n^{2}-5n+\frac{25}{4}=-10+\frac{25}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{2} ವರ್ಗಗೊಳಿಸಿ.
n^{2}-5n+\frac{25}{4}=-\frac{15}{4}
\frac{25}{4} ಗೆ -10 ಸೇರಿಸಿ.
\left(n-\frac{5}{2}\right)^{2}=-\frac{15}{4}
ಅಪವರ್ತನ n^{2}-5n+\frac{25}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(n-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n-\frac{5}{2}=\frac{\sqrt{15}i}{2} n-\frac{5}{2}=-\frac{\sqrt{15}i}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
n=\frac{5+\sqrt{15}i}{2} n=\frac{-\sqrt{15}i+5}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{2} ಸೇರಿಸಿ.