ಮೌಲ್ಯಮಾಪನ
-\frac{4\sqrt{3}}{9}-4\sqrt{2}\approx -6.426654608
ಅಪವರ್ತನ
\frac{4 {(-\sqrt{3} - 9 \sqrt{2})}}{9} = -6.426654608411882
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2\times \frac{\sqrt{1}}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
\frac{\sqrt{1}}{\sqrt{27}} ವರ್ಗಮೂಲದ ಭಾಗಿಸುವಿಕೆಯನ್ನಾಗಿ \sqrt{\frac{1}{27}} ವಿಭಜನೆಯ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
2\times \frac{1}{\sqrt{27}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
1 ರ ವರ್ಗಮೂಲವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 1 ಪಡೆಯಿರಿ.
2\times \frac{1}{3\sqrt{3}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
ಅಪವರ್ತನ 27=3^{2}\times 3. ವರ್ಗಮೂಲಗಳ \sqrt{3^{2}}\sqrt{3} ಉತ್ಪನ್ನವಾಗಿ \sqrt{3^{2}\times 3} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 3^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
2\times \frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
\frac{1}{3\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
2\times \frac{\sqrt{3}}{3\times 3}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
2\times \frac{\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
9 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\sqrt{18}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ 2\times \frac{\sqrt{3}}{9} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{2\sqrt{3}}{9}-\frac{2}{3}\times 3\sqrt{2}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
ಅಪವರ್ತನ 18=3^{2}\times 2. ವರ್ಗಮೂಲಗಳ \sqrt{3^{2}}\sqrt{2} ಉತ್ಪನ್ನವಾಗಿ \sqrt{3^{2}\times 2} ಉತ್ಪನ್ನದ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ. 3^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}
3 ಮತ್ತು 3 ರದ್ದುಗೊಳಿಸಿ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{\sqrt{4}}{\sqrt{3}}-4\sqrt{\frac{1}{2}}
\frac{\sqrt{4}}{\sqrt{3}} ವರ್ಗಮೂಲದ ಭಾಗಿಸುವಿಕೆಯನ್ನಾಗಿ \sqrt{\frac{4}{3}} ವಿಭಜನೆಯ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2}{\sqrt{3}}-4\sqrt{\frac{1}{2}}
4 ರ ವರ್ಗಮೂಲವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 2 ಪಡೆಯಿರಿ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-4\sqrt{\frac{1}{2}}
\frac{2}{\sqrt{3}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{3} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\sqrt{\frac{1}{2}}
\sqrt{3} ವರ್ಗವು 3 ಆಗಿದೆ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{1}}{\sqrt{2}}
\frac{\sqrt{1}}{\sqrt{2}} ವರ್ಗಮೂಲದ ಭಾಗಿಸುವಿಕೆಯನ್ನಾಗಿ \sqrt{\frac{1}{2}} ವಿಭಜನೆಯ ವರ್ಗಮೂಲವನ್ನು ಪುನಃ ಬರೆಯಿರಿ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\times \frac{1}{\sqrt{2}}
1 ರ ವರ್ಗಮೂಲವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 1 ಪಡೆಯಿರಿ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
\frac{1}{\sqrt{2}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು \sqrt{2} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{2}
\sqrt{2} ವರ್ಗವು 2 ಆಗಿದೆ.
\frac{2\sqrt{3}}{9}-2\sqrt{2}-\frac{2\sqrt{3}}{3}-2\sqrt{2}
4 ಮತ್ತು 2 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 2 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.
\frac{2\sqrt{3}}{9}-4\sqrt{2}-\frac{2\sqrt{3}}{3}
-4\sqrt{2} ಪಡೆದುಕೊಳ್ಳಲು -2\sqrt{2} ಮತ್ತು -2\sqrt{2} ಕೂಡಿಸಿ.
\frac{2\sqrt{3}}{9}+\frac{9\left(-4\right)\sqrt{2}}{9}-\frac{2\sqrt{3}}{3}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{9}{9} ಅನ್ನು -4\sqrt{2} ಬಾರಿ ಗುಣಿಸಿ.
\frac{2\sqrt{3}+9\left(-4\right)\sqrt{2}}{9}-\frac{2\sqrt{3}}{3}
\frac{2\sqrt{3}}{9} ಮತ್ತು \frac{9\left(-4\right)\sqrt{2}}{9} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{2\sqrt{3}-36\sqrt{2}}{9}-\frac{2\sqrt{3}}{3}
2\sqrt{3}+9\left(-4\right)\sqrt{2} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{2\sqrt{3}-36\sqrt{2}}{9}-\frac{3\times 2\sqrt{3}}{9}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. 9 ಮತ್ತು 3 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 9 ಆಗಿದೆ. \frac{3}{3} ಅನ್ನು \frac{2\sqrt{3}}{3} ಬಾರಿ ಗುಣಿಸಿ.
\frac{2\sqrt{3}-36\sqrt{2}-3\times 2\sqrt{3}}{9}
\frac{2\sqrt{3}-36\sqrt{2}}{9} ಮತ್ತು \frac{3\times 2\sqrt{3}}{9} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{2\sqrt{3}-36\sqrt{2}-6\sqrt{3}}{9}
2\sqrt{3}-36\sqrt{2}-3\times 2\sqrt{3} ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{-4\sqrt{3}-36\sqrt{2}}{9}
2\sqrt{3}-36\sqrt{2}-6\sqrt{3} ನಲ್ಲಿ ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}