ಮೌಲ್ಯಮಾಪನ
\frac{25}{21}\approx 1.19047619
ಅಪವರ್ತನ
\frac{5 ^ {2}}{3 \cdot 7} = 1\frac{4}{21} = 1.1904761904761905
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\frac{28+5}{14}-\frac{1\times 6+1}{6}
28 ಪಡೆದುಕೊಳ್ಳಲು 2 ಮತ್ತು 14 ಗುಣಿಸಿ.
\frac{33}{14}-\frac{1\times 6+1}{6}
33 ಪಡೆದುಕೊಳ್ಳಲು 28 ಮತ್ತು 5 ಸೇರಿಸಿ.
\frac{33}{14}-\frac{6+1}{6}
6 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 6 ಗುಣಿಸಿ.
\frac{33}{14}-\frac{7}{6}
7 ಪಡೆದುಕೊಳ್ಳಲು 6 ಮತ್ತು 1 ಸೇರಿಸಿ.
\frac{99}{42}-\frac{49}{42}
14 ಮತ್ತು 6 ಇವುಗಳ ಕನಿಷ್ಠ ಅಪವರ್ತ್ಯವು 42 ಆಗಿದೆ. 42 ಛೇದದ ಮೂಲಕ \frac{33}{14} ಮತ್ತು \frac{7}{6} ಅನ್ನು ಭಿನ್ನಾಂಕಗಳಿಗೆ ಪರಿವರ್ತಿಸಿ.
\frac{99-49}{42}
\frac{99}{42} ಮತ್ತು \frac{49}{42} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{50}{42}
50 ಪಡೆದುಕೊಳ್ಳಲು 99 ದಿಂದ 49 ಕಳೆಯಿರಿ.
\frac{25}{21}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{50}{42} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}