x ಪರಿಹರಿಸಿ
x = \frac{3 \sqrt{785} - 3}{56} \approx 1.447384899
x=\frac{-3\sqrt{785}-3}{56}\approx -1.554527756
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
42\times \frac{2}{3}x^{2}+3x-63=0
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 21, 3,7 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
28x^{2}+3x-63=0
28 ಪಡೆದುಕೊಳ್ಳಲು 42 ಮತ್ತು \frac{2}{3} ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{3^{2}-4\times 28\left(-63\right)}}{2\times 28}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 28, b ಗೆ 3 ಮತ್ತು c ಗೆ -63 ಬದಲಿಸಿ.
x=\frac{-3±\sqrt{9-4\times 28\left(-63\right)}}{2\times 28}
ವರ್ಗ 3.
x=\frac{-3±\sqrt{9-112\left(-63\right)}}{2\times 28}
28 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{9+7056}}{2\times 28}
-63 ಅನ್ನು -112 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{7065}}{2\times 28}
7056 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-3±3\sqrt{785}}{2\times 28}
7065 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-3±3\sqrt{785}}{56}
28 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{3\sqrt{785}-3}{56}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±3\sqrt{785}}{56} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3\sqrt{785} ಗೆ -3 ಸೇರಿಸಿ.
x=\frac{-3\sqrt{785}-3}{56}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±3\sqrt{785}}{56} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ 3\sqrt{785} ಕಳೆಯಿರಿ.
x=\frac{3\sqrt{785}-3}{56} x=\frac{-3\sqrt{785}-3}{56}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
42\times \frac{2}{3}x^{2}+3x-63=0
ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 21, 3,7 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
28x^{2}+3x-63=0
28 ಪಡೆದುಕೊಳ್ಳಲು 42 ಮತ್ತು \frac{2}{3} ಗುಣಿಸಿ.
28x^{2}+3x=63
ಎರಡೂ ಬದಿಗಳಿಗೆ 63 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
\frac{28x^{2}+3x}{28}=\frac{63}{28}
28 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{3}{28}x=\frac{63}{28}
28 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 28 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{28}x=\frac{9}{4}
7 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{63}{28} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{3}{28}x+\left(\frac{3}{56}\right)^{2}=\frac{9}{4}+\left(\frac{3}{56}\right)^{2}
\frac{3}{56} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{28} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{56} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{28}x+\frac{9}{3136}=\frac{9}{4}+\frac{9}{3136}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{56} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{3}{28}x+\frac{9}{3136}=\frac{7065}{3136}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{3136} ಗೆ \frac{9}{4} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{3}{56}\right)^{2}=\frac{7065}{3136}
ಅಪವರ್ತನ x^{2}+\frac{3}{28}x+\frac{9}{3136}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{56}\right)^{2}}=\sqrt{\frac{7065}{3136}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{56}=\frac{3\sqrt{785}}{56} x+\frac{3}{56}=-\frac{3\sqrt{785}}{56}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{3\sqrt{785}-3}{56} x=\frac{-3\sqrt{785}-3}{56}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{56} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}