A ಪರಿಹರಿಸಿ
A=3
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2+\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A}{A}+\frac{1}{A}}}}=\frac{64}{27}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{A}{A} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
2+\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A+1}{A}}}}=\frac{64}{27}
\frac{2A}{A} ಮತ್ತು \frac{1}{A} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
2+\frac{1}{2+\frac{1}{1+\frac{A}{2A+1}}}=\frac{64}{27}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ A ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. \frac{2A+1}{A} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 1 ಗುಣಿಸುವ ಮೂಲಕ \frac{2A+1}{A} ದಿಂದ 1 ಭಾಗಿಸಿ.
2+\frac{1}{2+\frac{1}{\frac{2A+1}{2A+1}+\frac{A}{2A+1}}}=\frac{64}{27}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{2A+1}{2A+1} ಅನ್ನು 1 ಬಾರಿ ಗುಣಿಸಿ.
2+\frac{1}{2+\frac{1}{\frac{2A+1+A}{2A+1}}}=\frac{64}{27}
\frac{2A+1}{2A+1} ಮತ್ತು \frac{A}{2A+1} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
2+\frac{1}{2+\frac{1}{\frac{3A+1}{2A+1}}}=\frac{64}{27}
2A+1+A ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
2+\frac{1}{2+\frac{2A+1}{3A+1}}=\frac{64}{27}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ A ವೇರಿಯೇಬಲ್ -\frac{1}{2} ಗೆ ಸಮನಾಗಿರಬಾರದು. \frac{3A+1}{2A+1} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 1 ಗುಣಿಸುವ ಮೂಲಕ \frac{3A+1}{2A+1} ದಿಂದ 1 ಭಾಗಿಸಿ.
2+\frac{1}{\frac{2\left(3A+1\right)}{3A+1}+\frac{2A+1}{3A+1}}=\frac{64}{27}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{3A+1}{3A+1} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
2+\frac{1}{\frac{2\left(3A+1\right)+2A+1}{3A+1}}=\frac{64}{27}
\frac{2\left(3A+1\right)}{3A+1} ಮತ್ತು \frac{2A+1}{3A+1} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
2+\frac{1}{\frac{6A+2+2A+1}{3A+1}}=\frac{64}{27}
2\left(3A+1\right)+2A+1 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
2+\frac{1}{\frac{8A+3}{3A+1}}=\frac{64}{27}
6A+2+2A+1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
2+\frac{3A+1}{8A+3}=\frac{64}{27}
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ A ವೇರಿಯೇಬಲ್ -\frac{1}{3} ಗೆ ಸಮನಾಗಿರಬಾರದು. \frac{8A+3}{3A+1} ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 1 ಗುಣಿಸುವ ಮೂಲಕ \frac{8A+3}{3A+1} ದಿಂದ 1 ಭಾಗಿಸಿ.
\frac{2\left(8A+3\right)}{8A+3}+\frac{3A+1}{8A+3}=\frac{64}{27}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{8A+3}{8A+3} ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
\frac{2\left(8A+3\right)+3A+1}{8A+3}=\frac{64}{27}
\frac{2\left(8A+3\right)}{8A+3} ಮತ್ತು \frac{3A+1}{8A+3} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{16A+6+3A+1}{8A+3}=\frac{64}{27}
2\left(8A+3\right)+3A+1 ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{19A+7}{8A+3}=\frac{64}{27}
16A+6+3A+1 ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
27\left(19A+7\right)=64\left(8A+3\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ A ವೇರಿಯೇಬಲ್ -\frac{3}{8} ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 27\left(8A+3\right), 8A+3,27 ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
513A+189=64\left(8A+3\right)
19A+7 ದಿಂದ 27 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
513A+189=512A+192
8A+3 ದಿಂದ 64 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
513A+189-512A=192
ಎರಡೂ ಕಡೆಗಳಿಂದ 512A ಕಳೆಯಿರಿ.
A+189=192
A ಪಡೆದುಕೊಳ್ಳಲು 513A ಮತ್ತು -512A ಕೂಡಿಸಿ.
A=192-189
ಎರಡೂ ಕಡೆಗಳಿಂದ 189 ಕಳೆಯಿರಿ.
A=3
3 ಪಡೆದುಕೊಳ್ಳಲು 192 ದಿಂದ 189 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}