r ಪರಿಹರಿಸಿ
r=2\sqrt{6}\approx 4.898979486
r=-2\sqrt{6}\approx -4.898979486
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
192=r^{2}\times 8
ಎರಡೂ ಬದಿಗಳಲ್ಲಿ \pi ರದ್ದುಗೊಳಿಸಿ.
\frac{192}{8}=r^{2}
8 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
24=r^{2}
24 ಪಡೆಯಲು 8 ರಿಂದ 192 ವಿಭಾಗಿಸಿ.
r^{2}=24
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
r=2\sqrt{6} r=-2\sqrt{6}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
192=r^{2}\times 8
ಎರಡೂ ಬದಿಗಳಲ್ಲಿ \pi ರದ್ದುಗೊಳಿಸಿ.
\frac{192}{8}=r^{2}
8 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
24=r^{2}
24 ಪಡೆಯಲು 8 ರಿಂದ 192 ವಿಭಾಗಿಸಿ.
r^{2}=24
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
r^{2}-24=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 24 ಕಳೆಯಿರಿ.
r=\frac{0±\sqrt{0^{2}-4\left(-24\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 0 ಮತ್ತು c ಗೆ -24 ಬದಲಿಸಿ.
r=\frac{0±\sqrt{-4\left(-24\right)}}{2}
ವರ್ಗ 0.
r=\frac{0±\sqrt{96}}{2}
-24 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
r=\frac{0±4\sqrt{6}}{2}
96 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
r=2\sqrt{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ r=\frac{0±4\sqrt{6}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
r=-2\sqrt{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ r=\frac{0±4\sqrt{6}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
r=2\sqrt{6} r=-2\sqrt{6}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}