ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
h ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

h\left(18h-17\right)=0
h ಅಪವರ್ತನಗೊಳಿಸಿ.
h=0 h=\frac{17}{18}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, h=0 ಮತ್ತು 18h-17=0 ಪರಿಹರಿಸಿ.
18h^{2}-17h=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
h=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}}}{2\times 18}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 18, b ಗೆ -17 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
h=\frac{-\left(-17\right)±17}{2\times 18}
\left(-17\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
h=\frac{17±17}{2\times 18}
-17 ನ ವಿಲೋಮವು 17 ಆಗಿದೆ.
h=\frac{17±17}{36}
18 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
h=\frac{34}{36}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ h=\frac{17±17}{36} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 17 ಗೆ 17 ಸೇರಿಸಿ.
h=\frac{17}{18}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{34}{36} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
h=\frac{0}{36}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ h=\frac{17±17}{36} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 17 ದಿಂದ 17 ಕಳೆಯಿರಿ.
h=0
36 ದಿಂದ 0 ಭಾಗಿಸಿ.
h=\frac{17}{18} h=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
18h^{2}-17h=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{18h^{2}-17h}{18}=\frac{0}{18}
18 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
h^{2}-\frac{17}{18}h=\frac{0}{18}
18 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 18 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
h^{2}-\frac{17}{18}h=0
18 ದಿಂದ 0 ಭಾಗಿಸಿ.
h^{2}-\frac{17}{18}h+\left(-\frac{17}{36}\right)^{2}=\left(-\frac{17}{36}\right)^{2}
-\frac{17}{36} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{17}{18} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{17}{36} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
h^{2}-\frac{17}{18}h+\frac{289}{1296}=\frac{289}{1296}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{17}{36} ವರ್ಗಗೊಳಿಸಿ.
\left(h-\frac{17}{36}\right)^{2}=\frac{289}{1296}
ಅಪವರ್ತನ h^{2}-\frac{17}{18}h+\frac{289}{1296}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(h-\frac{17}{36}\right)^{2}}=\sqrt{\frac{289}{1296}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
h-\frac{17}{36}=\frac{17}{36} h-\frac{17}{36}=-\frac{17}{36}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
h=\frac{17}{18} h=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{17}{36} ಸೇರಿಸಿ.