x ಪರಿಹರಿಸಿ
x = \frac{\sqrt{1561} - 11}{12} \approx 2.375791044
x=\frac{-\sqrt{1561}-11}{12}\approx -4.209124378
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
18x^{2}+33x=180
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
18x^{2}+33x-180=180-180
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 180 ಕಳೆಯಿರಿ.
18x^{2}+33x-180=0
180 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x=\frac{-33±\sqrt{33^{2}-4\times 18\left(-180\right)}}{2\times 18}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 18, b ಗೆ 33 ಮತ್ತು c ಗೆ -180 ಬದಲಿಸಿ.
x=\frac{-33±\sqrt{1089-4\times 18\left(-180\right)}}{2\times 18}
ವರ್ಗ 33.
x=\frac{-33±\sqrt{1089-72\left(-180\right)}}{2\times 18}
18 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-33±\sqrt{1089+12960}}{2\times 18}
-180 ಅನ್ನು -72 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-33±\sqrt{14049}}{2\times 18}
12960 ಗೆ 1089 ಸೇರಿಸಿ.
x=\frac{-33±3\sqrt{1561}}{2\times 18}
14049 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-33±3\sqrt{1561}}{36}
18 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{3\sqrt{1561}-33}{36}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-33±3\sqrt{1561}}{36} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3\sqrt{1561} ಗೆ -33 ಸೇರಿಸಿ.
x=\frac{\sqrt{1561}-11}{12}
36 ದಿಂದ -33+3\sqrt{1561} ಭಾಗಿಸಿ.
x=\frac{-3\sqrt{1561}-33}{36}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-33±3\sqrt{1561}}{36} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -33 ದಿಂದ 3\sqrt{1561} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{1561}-11}{12}
36 ದಿಂದ -33-3\sqrt{1561} ಭಾಗಿಸಿ.
x=\frac{\sqrt{1561}-11}{12} x=\frac{-\sqrt{1561}-11}{12}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
18x^{2}+33x=180
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{18x^{2}+33x}{18}=\frac{180}{18}
18 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{33}{18}x=\frac{180}{18}
18 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 18 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{11}{6}x=\frac{180}{18}
3 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{33}{18} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{11}{6}x=10
18 ದಿಂದ 180 ಭಾಗಿಸಿ.
x^{2}+\frac{11}{6}x+\left(\frac{11}{12}\right)^{2}=10+\left(\frac{11}{12}\right)^{2}
\frac{11}{12} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{11}{6} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{11}{12} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{11}{6}x+\frac{121}{144}=10+\frac{121}{144}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{11}{12} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{1561}{144}
\frac{121}{144} ಗೆ 10 ಸೇರಿಸಿ.
\left(x+\frac{11}{12}\right)^{2}=\frac{1561}{144}
ಅಪವರ್ತನ x^{2}+\frac{11}{6}x+\frac{121}{144}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{11}{12}\right)^{2}}=\sqrt{\frac{1561}{144}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{11}{12}=\frac{\sqrt{1561}}{12} x+\frac{11}{12}=-\frac{\sqrt{1561}}{12}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{1561}-11}{12} x=\frac{-\sqrt{1561}-11}{12}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{11}{12} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}