ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

16x-16-x^{2}=8x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
16x-16-x^{2}-8x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 8x ಕಳೆಯಿರಿ.
8x-16-x^{2}=0
8x ಪಡೆದುಕೊಳ್ಳಲು 16x ಮತ್ತು -8x ಕೂಡಿಸಿ.
-x^{2}+8x-16=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=8 ab=-\left(-16\right)=16
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -x^{2}+ax+bx-16 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,16 2,8 4,4
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 16 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+16=17 2+8=10 4+4=8
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=4 b=4
ಪರಿಹಾರವು 8 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-x^{2}+4x\right)+\left(4x-16\right)
\left(-x^{2}+4x\right)+\left(4x-16\right) ನ ಹಾಗೆ -x^{2}+8x-16 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
-x\left(x-4\right)+4\left(x-4\right)
ಮೊದಲನೆಯದರಲ್ಲಿ -x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-4\right)\left(-x+4\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=4 x=4
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-4=0 ಮತ್ತು -x+4=0 ಪರಿಹರಿಸಿ.
16x-16-x^{2}=8x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
16x-16-x^{2}-8x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 8x ಕಳೆಯಿರಿ.
8x-16-x^{2}=0
8x ಪಡೆದುಕೊಳ್ಳಲು 16x ಮತ್ತು -8x ಕೂಡಿಸಿ.
-x^{2}+8x-16=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 8 ಮತ್ತು c ಗೆ -16 ಬದಲಿಸಿ.
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
ವರ್ಗ 8.
x=\frac{-8±\sqrt{64+4\left(-16\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-8±\sqrt{64-64}}{2\left(-1\right)}
-16 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-8±\sqrt{0}}{2\left(-1\right)}
-64 ಗೆ 64 ಸೇರಿಸಿ.
x=-\frac{8}{2\left(-1\right)}
0 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=-\frac{8}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=4
-2 ದಿಂದ -8 ಭಾಗಿಸಿ.
16x-16-x^{2}=8x
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
16x-16-x^{2}-8x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 8x ಕಳೆಯಿರಿ.
8x-16-x^{2}=0
8x ಪಡೆದುಕೊಳ್ಳಲು 16x ಮತ್ತು -8x ಕೂಡಿಸಿ.
8x-x^{2}=16
ಎರಡೂ ಬದಿಗಳಿಗೆ 16 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
-x^{2}+8x=16
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-x^{2}+8x}{-1}=\frac{16}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{8}{-1}x=\frac{16}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-8x=\frac{16}{-1}
-1 ದಿಂದ 8 ಭಾಗಿಸಿ.
x^{2}-8x=-16
-1 ದಿಂದ 16 ಭಾಗಿಸಿ.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
-4 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -8 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -4 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-8x+16=-16+16
ವರ್ಗ -4.
x^{2}-8x+16=0
16 ಗೆ -16 ಸೇರಿಸಿ.
\left(x-4\right)^{2}=0
ಅಪವರ್ತನ x^{2}-8x+16. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-4=0 x-4=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=4 x=4
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 4 ಸೇರಿಸಿ.
x=4
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ. ಪರಿಹಾರಗಳು ಒಂದೇ ಆಗಿವೆ.