ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

16x^{2}-64x+65=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 16\times 65}}{2\times 16}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 16, b ಗೆ -64 ಮತ್ತು c ಗೆ 65 ಬದಲಿಸಿ.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 16\times 65}}{2\times 16}
ವರ್ಗ -64.
x=\frac{-\left(-64\right)±\sqrt{4096-64\times 65}}{2\times 16}
16 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-64\right)±\sqrt{4096-4160}}{2\times 16}
65 ಅನ್ನು -64 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-64\right)±\sqrt{-64}}{2\times 16}
-4160 ಗೆ 4096 ಸೇರಿಸಿ.
x=\frac{-\left(-64\right)±8i}{2\times 16}
-64 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{64±8i}{2\times 16}
-64 ನ ವಿಲೋಮವು 64 ಆಗಿದೆ.
x=\frac{64±8i}{32}
16 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{64+8i}{32}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{64±8i}{32} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8i ಗೆ 64 ಸೇರಿಸಿ.
x=2+\frac{1}{4}i
32 ದಿಂದ 64+8i ಭಾಗಿಸಿ.
x=\frac{64-8i}{32}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{64±8i}{32} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 64 ದಿಂದ 8i ಕಳೆಯಿರಿ.
x=2-\frac{1}{4}i
32 ದಿಂದ 64-8i ಭಾಗಿಸಿ.
x=2+\frac{1}{4}i x=2-\frac{1}{4}i
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
16x^{2}-64x+65=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
16x^{2}-64x+65-65=-65
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 65 ಕಳೆಯಿರಿ.
16x^{2}-64x=-65
65 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{16x^{2}-64x}{16}=-\frac{65}{16}
16 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{64}{16}\right)x=-\frac{65}{16}
16 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 16 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-4x=-\frac{65}{16}
16 ದಿಂದ -64 ಭಾಗಿಸಿ.
x^{2}-4x+\left(-2\right)^{2}=-\frac{65}{16}+\left(-2\right)^{2}
-2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-4x+4=-\frac{65}{16}+4
ವರ್ಗ -2.
x^{2}-4x+4=-\frac{1}{16}
4 ಗೆ -\frac{65}{16} ಸೇರಿಸಿ.
\left(x-2\right)^{2}=-\frac{1}{16}
ಅಪವರ್ತನ x^{2}-4x+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-\frac{1}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-2=\frac{1}{4}i x-2=-\frac{1}{4}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=2+\frac{1}{4}i x=2-\frac{1}{4}i
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.