ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

16-9x^{2}=3x^{2}-7x+4
3x-4 ರಿಂದು x-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
16-9x^{2}-3x^{2}=-7x+4
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
16-12x^{2}=-7x+4
-12x^{2} ಪಡೆದುಕೊಳ್ಳಲು -9x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
16-12x^{2}+7x=4
ಎರಡೂ ಬದಿಗಳಿಗೆ 7x ಸೇರಿಸಿ.
16-12x^{2}+7x-4=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.
12-12x^{2}+7x=0
12 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 4 ಕಳೆಯಿರಿ.
-12x^{2}+7x+12=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=7 ab=-12\times 12=-144
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -12x^{2}+ax+bx+12 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -144 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=16 b=-9
ಪರಿಹಾರವು 7 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-12x^{2}+16x\right)+\left(-9x+12\right)
\left(-12x^{2}+16x\right)+\left(-9x+12\right) ನ ಹಾಗೆ -12x^{2}+7x+12 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
-4x\left(3x-4\right)-3\left(3x-4\right)
ಮೊದಲನೆಯದರಲ್ಲಿ -4x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3x-4\right)\left(-4x-3\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 3x-4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=\frac{4}{3} x=-\frac{3}{4}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 3x-4=0 ಮತ್ತು -4x-3=0 ಪರಿಹರಿಸಿ.
16-9x^{2}=3x^{2}-7x+4
3x-4 ರಿಂದು x-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
16-9x^{2}-3x^{2}=-7x+4
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
16-12x^{2}=-7x+4
-12x^{2} ಪಡೆದುಕೊಳ್ಳಲು -9x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
16-12x^{2}+7x=4
ಎರಡೂ ಬದಿಗಳಿಗೆ 7x ಸೇರಿಸಿ.
16-12x^{2}+7x-4=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 4 ಕಳೆಯಿರಿ.
12-12x^{2}+7x=0
12 ಪಡೆದುಕೊಳ್ಳಲು 16 ದಿಂದ 4 ಕಳೆಯಿರಿ.
-12x^{2}+7x+12=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-7±\sqrt{7^{2}-4\left(-12\right)\times 12}}{2\left(-12\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -12, b ಗೆ 7 ಮತ್ತು c ಗೆ 12 ಬದಲಿಸಿ.
x=\frac{-7±\sqrt{49-4\left(-12\right)\times 12}}{2\left(-12\right)}
ವರ್ಗ 7.
x=\frac{-7±\sqrt{49+48\times 12}}{2\left(-12\right)}
-12 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-7±\sqrt{49+576}}{2\left(-12\right)}
12 ಅನ್ನು 48 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-7±\sqrt{625}}{2\left(-12\right)}
576 ಗೆ 49 ಸೇರಿಸಿ.
x=\frac{-7±25}{2\left(-12\right)}
625 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-7±25}{-24}
-12 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{18}{-24}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-7±25}{-24} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 25 ಗೆ -7 ಸೇರಿಸಿ.
x=-\frac{3}{4}
6 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{18}{-24} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{32}{-24}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-7±25}{-24} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -7 ದಿಂದ 25 ಕಳೆಯಿರಿ.
x=\frac{4}{3}
8 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-32}{-24} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{3}{4} x=\frac{4}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
16-9x^{2}=3x^{2}-7x+4
3x-4 ರಿಂದು x-1 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
16-9x^{2}-3x^{2}=-7x+4
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
16-12x^{2}=-7x+4
-12x^{2} ಪಡೆದುಕೊಳ್ಳಲು -9x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
16-12x^{2}+7x=4
ಎರಡೂ ಬದಿಗಳಿಗೆ 7x ಸೇರಿಸಿ.
-12x^{2}+7x=4-16
ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ.
-12x^{2}+7x=-12
-12 ಪಡೆದುಕೊಳ್ಳಲು 4 ದಿಂದ 16 ಕಳೆಯಿರಿ.
\frac{-12x^{2}+7x}{-12}=-\frac{12}{-12}
-12 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{7}{-12}x=-\frac{12}{-12}
-12 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -12 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{7}{12}x=-\frac{12}{-12}
-12 ದಿಂದ 7 ಭಾಗಿಸಿ.
x^{2}-\frac{7}{12}x=1
-12 ದಿಂದ -12 ಭಾಗಿಸಿ.
x^{2}-\frac{7}{12}x+\left(-\frac{7}{24}\right)^{2}=1+\left(-\frac{7}{24}\right)^{2}
-\frac{7}{24} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{7}{12} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{7}{24} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{7}{12}x+\frac{49}{576}=1+\frac{49}{576}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{7}{24} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{7}{12}x+\frac{49}{576}=\frac{625}{576}
\frac{49}{576} ಗೆ 1 ಸೇರಿಸಿ.
\left(x-\frac{7}{24}\right)^{2}=\frac{625}{576}
ಅಪವರ್ತನ x^{2}-\frac{7}{12}x+\frac{49}{576}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{7}{24}\right)^{2}}=\sqrt{\frac{625}{576}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{7}{24}=\frac{25}{24} x-\frac{7}{24}=-\frac{25}{24}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{4}{3} x=-\frac{3}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{7}{24} ಸೇರಿಸಿ.