x ಪರಿಹರಿಸಿ
x = \frac{\sqrt{967} - 1}{14} \approx 2.149758829
x=\frac{-\sqrt{967}-1}{14}\approx -2.292615972
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
14x^{2}-56=13-2x
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
14x^{2}-56-13=-2x
ಎರಡೂ ಕಡೆಗಳಿಂದ 13 ಕಳೆಯಿರಿ.
14x^{2}-69=-2x
-69 ಪಡೆದುಕೊಳ್ಳಲು -56 ದಿಂದ 13 ಕಳೆಯಿರಿ.
14x^{2}-69+2x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
14x^{2}+2x-69=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-2±\sqrt{2^{2}-4\times 14\left(-69\right)}}{2\times 14}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 14, b ಗೆ 2 ಮತ್ತು c ಗೆ -69 ಬದಲಿಸಿ.
x=\frac{-2±\sqrt{4-4\times 14\left(-69\right)}}{2\times 14}
ವರ್ಗ 2.
x=\frac{-2±\sqrt{4-56\left(-69\right)}}{2\times 14}
14 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-2±\sqrt{4+3864}}{2\times 14}
-69 ಅನ್ನು -56 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-2±\sqrt{3868}}{2\times 14}
3864 ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{-2±2\sqrt{967}}{2\times 14}
3868 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-2±2\sqrt{967}}{28}
14 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{967}-2}{28}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-2±2\sqrt{967}}{28} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{967} ಗೆ -2 ಸೇರಿಸಿ.
x=\frac{\sqrt{967}-1}{14}
28 ದಿಂದ -2+2\sqrt{967} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{967}-2}{28}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-2±2\sqrt{967}}{28} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -2 ದಿಂದ 2\sqrt{967} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{967}-1}{14}
28 ದಿಂದ -2-2\sqrt{967} ಭಾಗಿಸಿ.
x=\frac{\sqrt{967}-1}{14} x=\frac{-\sqrt{967}-1}{14}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
14x^{2}-56=13-2x
x^{2} ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು x ಗುಣಿಸಿ.
14x^{2}-56+2x=13
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
14x^{2}+2x=13+56
ಎರಡೂ ಬದಿಗಳಿಗೆ 56 ಸೇರಿಸಿ.
14x^{2}+2x=69
69 ಪಡೆದುಕೊಳ್ಳಲು 13 ಮತ್ತು 56 ಸೇರಿಸಿ.
\frac{14x^{2}+2x}{14}=\frac{69}{14}
14 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{2}{14}x=\frac{69}{14}
14 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 14 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{1}{7}x=\frac{69}{14}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{2}{14} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{1}{7}x+\left(\frac{1}{14}\right)^{2}=\frac{69}{14}+\left(\frac{1}{14}\right)^{2}
\frac{1}{14} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{1}{7} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{1}{14} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{69}{14}+\frac{1}{196}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{14} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{1}{7}x+\frac{1}{196}=\frac{967}{196}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{196} ಗೆ \frac{69}{14} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{1}{14}\right)^{2}=\frac{967}{196}
ಅಪವರ್ತನ x^{2}+\frac{1}{7}x+\frac{1}{196}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{1}{14}\right)^{2}}=\sqrt{\frac{967}{196}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{1}{14}=\frac{\sqrt{967}}{14} x+\frac{1}{14}=-\frac{\sqrt{967}}{14}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{967}-1}{14} x=\frac{-\sqrt{967}-1}{14}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1}{14} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}